DDP、FDDP、BOXDDP算法概要

DDP、FDDP、BOXDDP算法

  • DDP:适用于一般的最优控制问题,具有较好的数值稳定性。
  • FDDP:改进了可行性,适用于需要严格满足动力学和约束条件的控制问题。
  • BOXDDP:引入了控制输入约束,适用于存在物理限制的控制问题。

1. DDP(Differential Dynamic Programming)

基本原理

DDP是一种递归的最优控制算法,基于动态规划原理。它在给定初始条件和目标的情况下,通过迭代改进控制策略,使系统的轨迹逐步逼近最优轨迹。DDP通过线性化系统的动态方程和二次近似代价函数来求解。

特点

  • 局部线性化和二次近似:在每个时间步,DDP对系统动态进行线性化,对代价函数进行二次近似。
  • 递归贝尔曼方程:利用递归形式的贝尔曼方程,逐步更新最优控制策略。
  • 数值稳定性:DDP算法在处理非线性系统时具有良好的数值稳定性。

2. FDDP(Feasibility-Driven DDP)

基本原理

FDDP是DDP的一种改进版本,重点在于确保每次迭代产生的控制输入和状态轨迹是可行的。它在每次迭代中调整控制输入,使系统轨迹尽可能满足动力学和约束条件。

特点

  • 可行性:FDDP通过在迭代过程中调整步长和控制输入,确保生成的轨迹和控制输入是可行的。
  • 快速收敛:通过改进步长选择和控制策略更新,FDDP在实际应用中通常比标准DDP更快收敛。

3. BOXDDP(Box-constrained DDP)

基本原理

BOXDDP是在DDP算法基础上,进一步考虑了控制输入的范围约束(即控制输入的上下限)。这对于实际应用中常见的物理限制非常重要。

特点

  • 控制输入约束:通过引入约束处理机制,BOXDDP在迭代过程中始终考虑控制输入的上下限,确保生成的控制策略满足物理约束。
  • 改进的优化策略:BOXDDP采用了改进的优化策略,以处理带约束的最优控制问题。
相关推荐
却道天凉_好个秋15 分钟前
目标检测算法与原理(三):PyTorch实现迁移学习
pytorch·算法·目标检测
无限进步_34 分钟前
【C++】大数相加算法详解:从字符串加法到内存布局的思考
开发语言·c++·windows·git·算法·github·visual studio
C+-C资深大佬1 小时前
C++ 数据类型转换是如何实现的?
开发语言·c++·算法
cwplh1 小时前
DP 优化二:斜率优化 DP
算法·动态规划
Hcoco_me1 小时前
大模型面试题90:half2,float4这种优化 与 pack优化的底层原理是什么?
人工智能·算法·机器学习·langchain·vllm
浅念-1 小时前
链表经典面试题目
c语言·数据结构·经验分享·笔记·学习·算法
Python算法实战1 小时前
《大模型面试宝典》(2026版) 正式发布!
人工智能·深度学习·算法·面试·职场和发展·大模型
菜鸟233号3 小时前
力扣213 打家劫舍II java实现
java·数据结构·算法·leetcode
狐573 小时前
2026-01-18-LeetCode刷题笔记-1895-最大的幻方
笔记·算法·leetcode
Q741_1473 小时前
C++ 队列 宽度优先搜索 BFS 力扣 662. 二叉树最大宽度 每日一题
c++·算法·leetcode·bfs·宽度优先