DDP、FDDP、BOXDDP算法概要

DDP、FDDP、BOXDDP算法

  • DDP:适用于一般的最优控制问题,具有较好的数值稳定性。
  • FDDP:改进了可行性,适用于需要严格满足动力学和约束条件的控制问题。
  • BOXDDP:引入了控制输入约束,适用于存在物理限制的控制问题。

1. DDP(Differential Dynamic Programming)

基本原理

DDP是一种递归的最优控制算法,基于动态规划原理。它在给定初始条件和目标的情况下,通过迭代改进控制策略,使系统的轨迹逐步逼近最优轨迹。DDP通过线性化系统的动态方程和二次近似代价函数来求解。

特点

  • 局部线性化和二次近似:在每个时间步,DDP对系统动态进行线性化,对代价函数进行二次近似。
  • 递归贝尔曼方程:利用递归形式的贝尔曼方程,逐步更新最优控制策略。
  • 数值稳定性:DDP算法在处理非线性系统时具有良好的数值稳定性。

2. FDDP(Feasibility-Driven DDP)

基本原理

FDDP是DDP的一种改进版本,重点在于确保每次迭代产生的控制输入和状态轨迹是可行的。它在每次迭代中调整控制输入,使系统轨迹尽可能满足动力学和约束条件。

特点

  • 可行性:FDDP通过在迭代过程中调整步长和控制输入,确保生成的轨迹和控制输入是可行的。
  • 快速收敛:通过改进步长选择和控制策略更新,FDDP在实际应用中通常比标准DDP更快收敛。

3. BOXDDP(Box-constrained DDP)

基本原理

BOXDDP是在DDP算法基础上,进一步考虑了控制输入的范围约束(即控制输入的上下限)。这对于实际应用中常见的物理限制非常重要。

特点

  • 控制输入约束:通过引入约束处理机制,BOXDDP在迭代过程中始终考虑控制输入的上下限,确保生成的控制策略满足物理约束。
  • 改进的优化策略:BOXDDP采用了改进的优化策略,以处理带约束的最优控制问题。
相关推荐
李泽辉_15 分钟前
深度学习算法学习(一):梯度下降法和最简单的深度学习核心原理代码
深度学习·学习·算法
꧁Q༒ོγ꧂18 分钟前
算法详解---大纲
算法
m0_6038887124 分钟前
Scaling Trends for Multi-Hop Contextual Reasoning in Mid-Scale Language Models
人工智能·算法·ai·语言模型·论文速览
Xの哲學27 分钟前
Linux io_uring 深度剖析: 重新定义高性能I/O的架构革命
linux·服务器·网络·算法·边缘计算
comli_cn34 分钟前
残差链接(Residual Connection)
人工智能·算法
Aaron158842 分钟前
基于VU13P在人工智能高速接口传输上的应用浅析
人工智能·算法·fpga开发·硬件架构·信息与通信·信号处理·基带工程
予枫的编程笔记44 分钟前
【论文解读】DLF:以语言为核心的多模态情感分析新范式 (AAAI 2025)
人工智能·python·算法·机器学习
im_AMBER1 小时前
Leetcode 99 删除排序链表中的重复元素 | 合并两个链表
数据结构·笔记·学习·算法·leetcode·链表
王老师青少年编程1 小时前
信奥赛C++提高组csp-s之欧拉回路
c++·算法·csp·欧拉回路·信奥赛·csp-s·提高组
墨有6661 小时前
数学分析栈的出栈顺序:从算法判断到数学本质(卡特兰数初探)
c++·算法·数学建模