DDP、FDDP、BOXDDP算法概要

DDP、FDDP、BOXDDP算法

  • DDP:适用于一般的最优控制问题,具有较好的数值稳定性。
  • FDDP:改进了可行性,适用于需要严格满足动力学和约束条件的控制问题。
  • BOXDDP:引入了控制输入约束,适用于存在物理限制的控制问题。

1. DDP(Differential Dynamic Programming)

基本原理

DDP是一种递归的最优控制算法,基于动态规划原理。它在给定初始条件和目标的情况下,通过迭代改进控制策略,使系统的轨迹逐步逼近最优轨迹。DDP通过线性化系统的动态方程和二次近似代价函数来求解。

特点

  • 局部线性化和二次近似:在每个时间步,DDP对系统动态进行线性化,对代价函数进行二次近似。
  • 递归贝尔曼方程:利用递归形式的贝尔曼方程,逐步更新最优控制策略。
  • 数值稳定性:DDP算法在处理非线性系统时具有良好的数值稳定性。

2. FDDP(Feasibility-Driven DDP)

基本原理

FDDP是DDP的一种改进版本,重点在于确保每次迭代产生的控制输入和状态轨迹是可行的。它在每次迭代中调整控制输入,使系统轨迹尽可能满足动力学和约束条件。

特点

  • 可行性:FDDP通过在迭代过程中调整步长和控制输入,确保生成的轨迹和控制输入是可行的。
  • 快速收敛:通过改进步长选择和控制策略更新,FDDP在实际应用中通常比标准DDP更快收敛。

3. BOXDDP(Box-constrained DDP)

基本原理

BOXDDP是在DDP算法基础上,进一步考虑了控制输入的范围约束(即控制输入的上下限)。这对于实际应用中常见的物理限制非常重要。

特点

  • 控制输入约束:通过引入约束处理机制,BOXDDP在迭代过程中始终考虑控制输入的上下限,确保生成的控制策略满足物理约束。
  • 改进的优化策略:BOXDDP采用了改进的优化策略,以处理带约束的最优控制问题。
相关推荐
Xの哲學13 小时前
从硬中断到 softirq:Linux 软中断机制的全景解剖
linux·服务器·网络·算法·边缘计算
生信碱移13 小时前
单细胞空转CNV分析工具:比 inferCNV 快10倍?!兼容单细胞与空转的 CNV 分析与聚类,竟然还支持肿瘤的亚克隆树构建!
算法·机器学习·数据挖掘·数据分析·聚类
Brduino脑机接口技术答疑14 小时前
TDCA 算法在 SSVEP 场景中:Padding 的应用对象与工程实践指南
人工智能·python·算法·数据分析·脑机接口·eeg
keep_learning11114 小时前
Z-Image模型架构全解析
人工智能·算法·计算机视觉·大模型·多模态
点云SLAM14 小时前
Boost中Graph模块中boost::edge_capacity和boost::edge_capacity_t
数据库·算法·edge·图论·最大团·最大流算法·boost库使用
lihaihui199114 小时前
asan 内存问题分析
算法
算法与编程之美15 小时前
探索不同的损失函数对分类精度的影响.
人工智能·算法·机器学习·分类·数据挖掘
H_BB15 小时前
leetcode160:相交链表
数据结构·算法·链表
前端小L15 小时前
贪心算法专题(十五):借位与填充的智慧——「单调递增的数字」
javascript·算法·贪心算法
前端小L15 小时前
贪心算法专题(十四):万流归宗——「合并区间」
javascript·算法·贪心算法