DDP、FDDP、BOXDDP算法概要

DDP、FDDP、BOXDDP算法

  • DDP:适用于一般的最优控制问题,具有较好的数值稳定性。
  • FDDP:改进了可行性,适用于需要严格满足动力学和约束条件的控制问题。
  • BOXDDP:引入了控制输入约束,适用于存在物理限制的控制问题。

1. DDP(Differential Dynamic Programming)

基本原理

DDP是一种递归的最优控制算法,基于动态规划原理。它在给定初始条件和目标的情况下,通过迭代改进控制策略,使系统的轨迹逐步逼近最优轨迹。DDP通过线性化系统的动态方程和二次近似代价函数来求解。

特点

  • 局部线性化和二次近似:在每个时间步,DDP对系统动态进行线性化,对代价函数进行二次近似。
  • 递归贝尔曼方程:利用递归形式的贝尔曼方程,逐步更新最优控制策略。
  • 数值稳定性:DDP算法在处理非线性系统时具有良好的数值稳定性。

2. FDDP(Feasibility-Driven DDP)

基本原理

FDDP是DDP的一种改进版本,重点在于确保每次迭代产生的控制输入和状态轨迹是可行的。它在每次迭代中调整控制输入,使系统轨迹尽可能满足动力学和约束条件。

特点

  • 可行性:FDDP通过在迭代过程中调整步长和控制输入,确保生成的轨迹和控制输入是可行的。
  • 快速收敛:通过改进步长选择和控制策略更新,FDDP在实际应用中通常比标准DDP更快收敛。

3. BOXDDP(Box-constrained DDP)

基本原理

BOXDDP是在DDP算法基础上,进一步考虑了控制输入的范围约束(即控制输入的上下限)。这对于实际应用中常见的物理限制非常重要。

特点

  • 控制输入约束:通过引入约束处理机制,BOXDDP在迭代过程中始终考虑控制输入的上下限,确保生成的控制策略满足物理约束。
  • 改进的优化策略:BOXDDP采用了改进的优化策略,以处理带约束的最优控制问题。
相关推荐
聚客AI21 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
moonlifesudo1 天前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja2 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下2 天前
最终的信号类
开发语言·c++·算法