动手学深度学习(Pytorch版)代码实践 -深度学习基础-08多层感知机简洁版

08多层感知机简洁版

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l
import liliPytorch as lp

net = nn.Sequential(
    nn.Flatten(),
    nn.Linear(784,256),
    nn.ReLU(),
    nn.Linear(256,10)  
)

#函数接受一个参数 m,通常是一个神经网络模块(例如,线性层,卷积层等)
def init_weights(m):
#这行代码检查传入的模块 m 是否是 nn.Linear 类型,即线性层(全连接层)
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight,std=0.01)
#m.weight 是线性层的权重矩阵。
#std=0.01 指定了初始化权重的标准差为 0.01,表示权重将从均值为0,标准差为0.01的正态分布中随机采样。

#model.apply(init_weights) 会遍历模型的所有模块,并对每个模块调用 init_weights 函数。
#如果模块是 nn.Linear 类型,则初始化它的权重。
net.apply(init_weights)

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(),lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

#训练
lp.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

#验证
lp.predict_ch3(net, test_iter)
d2l.plt.show() 

运行结果:

python 复制代码
<Figure size 350x250 with 1 Axes>
epoch: 1,train_loss: 1.0443685918807983,train_acc: 0.64345,test_acc: 0.7608
<Figure size 350x250 with 1 Axes>
epoch: 2,train_loss: 0.5980708345413208,train_acc: 0.7904166666666667,test_acc: 0.7707
<Figure size 350x250 with 1 Axes>
epoch: 3,train_loss: 0.5194601311365763,train_acc: 0.8209166666666666,test_acc: 0.8143
<Figure size 350x250 with 1 Axes>
epoch: 4,train_loss: 0.4801325536727905,train_acc: 0.8319666666666666,test_acc: 0.827
<Figure size 350x250 with 1 Axes>
epoch: 5,train_loss: 0.4518238489786784,train_acc: 0.8414833333333334,test_acc: 0.8358
相关推荐
EasonZzzzzzz4 分钟前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子14 分钟前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor
要努力啊啊啊14 分钟前
Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一
人工智能·语言模型·自然语言处理·faiss
EasyDSS22 分钟前
国标GB28181设备管理软件EasyGBS远程视频监控方案助力高效安全运营
网络·人工智能
春末的南方城市30 分钟前
港科大&快手提出统一上下文视频编辑 UNIC,各种视频编辑任务一网打尽,还可进行多项任务组合!
人工智能·计算机视觉·stable diffusion·aigc·transformer
小喵喵生气气34 分钟前
Python60日基础学习打卡Day46
深度学习·机器学习
叶子2024221 小时前
学习使用YOLO的predict函数使用
人工智能·学习·yolo
dmy1 小时前
n8n内网快速部署
运维·人工智能·程序员
傻啦嘿哟1 小时前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能
火星数据-Tina1 小时前
AI数据分析在体育中的应用:技术与实践
人工智能·数据挖掘·数据分析