【代码随想录算法训练营第三十九天|62.不同路径、63.不同路径II、343.整数拆分、96.不同的二叉搜索树】

文章目录

62.不同路径

dp是每个各自的路径的和,每个格子的路径是左边格子和上边格子的和。这里初始化的时侯假设所有格子都只有一条路径,然后遍历所有格子,如果i-1和j-1大于0则可以把对应格子的值加上。

python 复制代码
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp = [[1 for _ in range(n)] for _ in range(m)]
        for i in range(m):
            for j in range(n):
                if i > 0 and j > 0:
                    dp[i][j] = dp[i-1][j] + dp[i][j-1]
                elif i > 0:
                    dp[i][j] = dp[i-1][j]
                elif j > 0:
                    dp[i][j] = dp[i][j-1]
        return dp[-1][-1]

63.不同路径II

和上一题相比如果格子有阻挡把他赋值为0,别的一样。

python 复制代码
class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        dp = [[1 for _ in range(n)] for _ in range(m)]
        for i in range(m):
            for j in range(n):
                if obstacleGrid[i][j]:
                    dp[i][j] = 0
                else:
                    if i > 0 and j > 0:
                        dp[i][j] = dp[i-1][j] + dp[i][j-1]
                    elif i > 0:
                        dp[i][j] = dp[i-1][j]
                    elif j > 0:
                        dp[i][j] = dp[i][j-1]
        return dp[-1][-1]

343.整数拆分

dp表示的是数字i的最大的整数拆分值,用for对每一个i再拆分成两个数字,递推公式是在dp[i]和j*(i-j)和j*dp[i-j]中选最大的,第一个是记录当前的最大整数拆分值,第二个是这个数字i在减去j拆分成两个数字的乘积,第三项是j和(i-j)的最大整数拆分的乘积(包括了拆分成多个数字的可能性)。

python 复制代码
class Solution:
    def integerBreak(self, n: int) -> int:
        dp = [1 for _ in range(n+1)]
        for i in range(3, n+1):
            for j in range(1, i):
                dp[i] = max(dp[i], j * (i - j), dp[i-j]*j)
        return dp[n]

96.不同的二叉搜索树

dp内容是值为i的时候的二叉搜索树的可能个数,值为i时,他可能的二叉搜索树是从1到i的所有元素作为根节点的树相加的,对于每一个作为根节点的元素j,他的可能搜索二叉树由小于j的元素[j-1]的dp值构成左子树,由大于j的元素[i-j]的dp值构成右子树,则根节点为j的树的dp值为左右子树的dp值相乘。

python 复制代码
class Solution:
    def numTrees(self, n: int) -> int:
        dp = [0] * (n+1)
        dp[0] = 1
        for i in range(1, n+1):
            for j in range(1,i+1):
                dp[i] += dp[j-1] * dp[i-j]
        return dp[-1]
相关推荐
灰灰勇闯IT1 分钟前
【探索实战】Kurator多集群统一应用分发实战:从环境搭建到业务落地全流程
算法
鱼在树上飞9 分钟前
乘积最大子数组
算法
H_z___25 分钟前
Codeforces Round 1070 (Div. 2) A~D F
数据结构·算法
自学小白菜1 小时前
每周刷题 - 第三周 - 双指针专题 - 02
python·算法·leetcode
杜子不疼.1 小时前
【LeetCode76_滑动窗口】最小覆盖子串问题
算法·哈希算法
ComputerInBook1 小时前
代数基本概念理解——特征向量和特征值
人工智能·算法·机器学习·线性变换·特征值·特征向量
不能只会打代码1 小时前
力扣--3433. 统计用户被提及情况
java·算法·leetcode·力扣
biter down2 小时前
C++ 解决海量数据 TopK 问题:小根堆高效解法
c++·算法
用户6600676685392 小时前
斐波那契数列:从递归到缓存优化的极致拆解
前端·javascript·算法
初夏睡觉2 小时前
P1055 [NOIP 2008 普及组] ISBN 号码
算法·p1055