【代码随想录算法训练营第三十九天|62.不同路径、63.不同路径II、343.整数拆分、96.不同的二叉搜索树】

文章目录

62.不同路径

dp是每个各自的路径的和,每个格子的路径是左边格子和上边格子的和。这里初始化的时侯假设所有格子都只有一条路径,然后遍历所有格子,如果i-1和j-1大于0则可以把对应格子的值加上。

python 复制代码
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp = [[1 for _ in range(n)] for _ in range(m)]
        for i in range(m):
            for j in range(n):
                if i > 0 and j > 0:
                    dp[i][j] = dp[i-1][j] + dp[i][j-1]
                elif i > 0:
                    dp[i][j] = dp[i-1][j]
                elif j > 0:
                    dp[i][j] = dp[i][j-1]
        return dp[-1][-1]

63.不同路径II

和上一题相比如果格子有阻挡把他赋值为0,别的一样。

python 复制代码
class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        dp = [[1 for _ in range(n)] for _ in range(m)]
        for i in range(m):
            for j in range(n):
                if obstacleGrid[i][j]:
                    dp[i][j] = 0
                else:
                    if i > 0 and j > 0:
                        dp[i][j] = dp[i-1][j] + dp[i][j-1]
                    elif i > 0:
                        dp[i][j] = dp[i-1][j]
                    elif j > 0:
                        dp[i][j] = dp[i][j-1]
        return dp[-1][-1]

343.整数拆分

dp表示的是数字i的最大的整数拆分值,用for对每一个i再拆分成两个数字,递推公式是在dp[i]和j*(i-j)和j*dp[i-j]中选最大的,第一个是记录当前的最大整数拆分值,第二个是这个数字i在减去j拆分成两个数字的乘积,第三项是j和(i-j)的最大整数拆分的乘积(包括了拆分成多个数字的可能性)。

python 复制代码
class Solution:
    def integerBreak(self, n: int) -> int:
        dp = [1 for _ in range(n+1)]
        for i in range(3, n+1):
            for j in range(1, i):
                dp[i] = max(dp[i], j * (i - j), dp[i-j]*j)
        return dp[n]

96.不同的二叉搜索树

dp内容是值为i的时候的二叉搜索树的可能个数,值为i时,他可能的二叉搜索树是从1到i的所有元素作为根节点的树相加的,对于每一个作为根节点的元素j,他的可能搜索二叉树由小于j的元素[j-1]的dp值构成左子树,由大于j的元素[i-j]的dp值构成右子树,则根节点为j的树的dp值为左右子树的dp值相乘。

python 复制代码
class Solution:
    def numTrees(self, n: int) -> int:
        dp = [0] * (n+1)
        dp[0] = 1
        for i in range(1, n+1):
            for j in range(1,i+1):
                dp[i] += dp[j-1] * dp[i-j]
        return dp[-1]
相关推荐
前端 贾公子3 分钟前
力扣1338 === 贪心算法解决数组减半问题
算法·leetcode·贪心算法
HelloDam12 分钟前
leetcode28.找出字符串中第一个匹配项的下标,KMP算法保姆级教程(带动图)
java·后端·算法
不是编程家24 分钟前
优选算法第七讲:分治
算法
LuckyLay31 分钟前
LeetCode算法题(Go语言实现)_36
算法·leetcode·golang
S01d13r34 分钟前
LeetCode 解题思路 33(Hot 100)
javascript·算法·leetcode
阿巴~阿巴~38 分钟前
蓝桥杯 C/C++ 组历届真题合集速刷(二)
c语言·c++·算法·蓝桥杯
IOsetting1 小时前
图像处理中的 Gaussina Blur 和 SIFT 算法
图像处理·人工智能·算法
小黄人软件2 小时前
PCI认证 密钥注入 ECC算法工具 NID_secp521r1 国密算法 openssl 全套证书生成,从证书提取公私钥数组 x,y等
算法·https·ssl
牛奶咖啡.8542 小时前
树和图论(详细整理,简单易懂!)
数据结构·c++·算法·深度优先·图论
2401_881244403 小时前
416. 分割等和子集
数据结构·算法