Windows10 利用QT搭建SOEM开发环境

文章目录

  • [一. SOEM库简介](#一. SOEM库简介)
  • [二. 安装WinPcap](#二. 安装WinPcap)
  • [三. SOEM(1.4)库安装](#三. SOEM(1.4)库安装)
    • [(1) 编译32位库](#(1) 编译32位库)
    • [(2) 编译64位库](#(2) 编译64位库)
  • [四. 运行SOEM示例代码](#四. 运行SOEM示例代码)
  • [五. WIN10下利用QT构建SOEM开发环境](#五. WIN10下利用QT构建SOEM开发环境)

一. SOEM库简介

SOEM(Scalable Open EtherCAT Master 或 Simple Open EtherCAT Master)是一个开源的、用于EtherCAT通信协议的软件库。EtherCAT(Ethernet for Control Automation Technology)是一种实时以太网通信协议,广泛应用于自动化和机器人技术中,以其高速和低延迟特性而受到青睐。SOEM库允许开发者在他们的应用程序中实现EtherCAT主站功能,从而控制和驱动EtherCAT从站设备。

以下是SOEM库的一些关键特点和优势:

  • 开源和免费:SOEM是开源的,使用LGPLv2.1授权,可以自由使用、修改和分发。
  • 跨平台支持:SOEM支持多种操作系统,包括Linux、FreeRTOS、VxWorks、QNX等,提供跨平台的灵活性。
  • 实时性能:SOEM直接与硬件交互,确保了低延迟和高数据吞吐量,满足实时性要求。
  • 易于集成:SOEM使用标准的设备驱动模型,简化了在现有系统中添加EtherCAT功能的过程。
  • 文档完善:提供详细的API文档和示例代码,帮助开发者快速上手。
  • 社区支持:作为一个开源项目,SOEM拥有活跃的社区支持,不断有更新和问题解决方案。

SOEM库适用于工业自动化、实验室研究、开源硬件项目和教育用途等多种场景。它为用户应用程序提供了发送和接收EtherCAT帧的方法,支持读写过程数据、保持本地IO数据与全局IO映射同步、检测和管理系统错误等功能。

开发者可以通过研究SOEM的源码来深入理解EtherCAT主站与从站之间的交互方式,这不仅有助于学习EtherCAT协议,还能在此基础上进行定制和优化,以满足特定的应用需求。SOEM项目在GitHub上维护,提供了完整的示例应用和配置文件,方便开发者获取和使用。

二. 安装WinPcap

WinPcap库

  1. 下载并安装WinPcap运行库:官网:http://www.winpcap.org/install/default.htm
  2. 运行下载好的exe文件,点击下一步
  3. 点击同意
  4. 点击安装
  5. 点击完成

三. SOEM(1.4)库安装

(1) 编译32位库

  1. 官网下载SOEM源文件

  2. 运行VS2019的命令行

  3. 进入下载好的SOEM源文件

  4. 在源文件目录下创建build文件夹,并进入

    bash 复制代码
    mkdir build
    cd build
  5. 运行以下命令,编译源文件

    bash 复制代码
    cmake .. -G "NMake Makefiles"
    nmake
  6. 运行以下命令生成调用库

    bash 复制代码
    namke install

(2) 编译64位库

  1. 官网下载SOEM源文件

  2. 运行VS2019的命令行

  3. 进入下载好的SOEM源文件

  4. 在源文件目录下创建build文件夹,并进入

    bash 复制代码
    mkdir build
  5. 运行以下命令,编译源文件

    bash 复制代码
    cmake .. -G "Visual Studio 16 2019" -S . -B build
  6. 进入build文件夹,用vs2019打开soem.sln项目

    bash 复制代码
    namke install
  7. 点击生成,点击配置管理器

  8. 选择要生成的内容

  9. 点击生成解决方案

  10. 没有报错则完成,可以在debug文件夹中找到生成的库文件

四. 运行SOEM示例代码

  1. 编译好的SOEM文件夹中有例程(simple_ng)

  2. cmd中运行simple_ng,可以看到电脑带的所有的网卡信息

  3. 选择已经接入EtherCAT从站的网口,复制网口信息(\Device\NPF_{51D73200-BC7C-4562-8918-04FA9C959372}),cmd中运行如下代码

    bash 复制代码
    simple_ng \Device\NPF_{51D73200-BC7C-4562-8918-04FA9C959372}
  4. 通过-map指令,可以查看从站的I/O配置

    bash 复制代码
    slaveinfo \Device\NPF_{A837AD34-3738-42FF-8E0B-F5B0BE69ABD6} -map

五. WIN10下利用QT构建SOEM开发环境

  1. 在QT中创建一个新c++项目,CMakeList.txt文件如下

    bash 复制代码
    cmake_minimum_required(VERSION 3.5)
    
    project(SOEMTest LANGUAGES CXX)
    
    set(CMAKE_CXX_STANDARD 17)
    set(CMAKE_CXX_STANDARD_REQUIRED ON)
    
    set(SOEM_DIR "C:\\Users\\10001540\\Downloads\\SOEM-master")
    include_directories(${SOEM_DIR}\\install\\include\\soem\\ ${SOEM_DIR}\\oshw\\win32\\wpcap\\Include\\)
    link_directories(C:\\Users\\10001540\\Downloads\\SOEM-master\\build\\Debug\\ ${SOEM_DIR}\\oshw\\win32\\wpcap\\Lib\\x64\\)
    
    add_executable(SOEMTest main.cpp)
    
    target_link_libraries(SOEMTest PUBLIC soem.lib Packet.lib wpcap.lib Ws2_32.lib Winmm.lib)
    
    install(TARGETS SOEMTest
        LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR})
    
    message(STATUS "The system is: ${CMAKE_SYSTEM_NAME}")
  2. main函数中,代码如下:

    cpp 复制代码
    #include <iostream>
    #include "ethercat.h"
    
    using namespace std;
    
    char IOmap[4096];
    ec_ODlistt ODlist;
    ec_OElistt OElist;
    boolean printSDO = FALSE;
    boolean printMAP = FALSE;
    char usdo[128];
    char hstr[1024];
    
    char* dtype2string(uint16 dtype)
    {
        switch(dtype)
        {
            case ECT_BOOLEAN:
                sprintf(hstr, "BOOLEAN");
                break;
            case ECT_INTEGER8:
                sprintf(hstr, "INTEGER8");
                break;
            case ECT_INTEGER16:
                sprintf(hstr, "INTEGER16");
                break;
            case ECT_INTEGER32:
                sprintf(hstr, "INTEGER32");
                break;
            case ECT_INTEGER24:
                sprintf(hstr, "INTEGER24");
                break;
            case ECT_INTEGER64:
                sprintf(hstr, "INTEGER64");
                break;
            case ECT_UNSIGNED8:
                sprintf(hstr, "UNSIGNED8");
                break;
            case ECT_UNSIGNED16:
                sprintf(hstr, "UNSIGNED16");
                break;
            case ECT_UNSIGNED32:
                sprintf(hstr, "UNSIGNED32");
                break;
            case ECT_UNSIGNED24:
                sprintf(hstr, "UNSIGNED24");
                break;
            case ECT_UNSIGNED64:
                sprintf(hstr, "UNSIGNED64");
                break;
            case ECT_REAL32:
                sprintf(hstr, "REAL32");
                break;
            case ECT_REAL64:
                sprintf(hstr, "REAL64");
                break;
            case ECT_BIT1:
                sprintf(hstr, "BIT1");
                break;
            case ECT_BIT2:
                sprintf(hstr, "BIT2");
                break;
            case ECT_BIT3:
                sprintf(hstr, "BIT3");
                break;
            case ECT_BIT4:
                sprintf(hstr, "BIT4");
                break;
            case ECT_BIT5:
                sprintf(hstr, "BIT5");
                break;
            case ECT_BIT6:
                sprintf(hstr, "BIT6");
                break;
            case ECT_BIT7:
                sprintf(hstr, "BIT7");
                break;
            case ECT_BIT8:
                sprintf(hstr, "BIT8");
                break;
            case ECT_VISIBLE_STRING:
                sprintf(hstr, "VISIBLE_STRING");
                break;
            case ECT_OCTET_STRING:
                sprintf(hstr, "OCTET_STRING");
                break;
            default:
                sprintf(hstr, "Type 0x%4.4X", dtype);
        }
        return hstr;
    }
    
    char* SDO2string(uint16 slave, uint16 index, uint8 subidx, uint16 dtype)
    {
       int l = sizeof(usdo) - 1, i;
       uint8 *u8;
       int8 *i8;
       uint16 *u16;
       int16 *i16;
       uint32 *u32;
       int32 *i32;
       uint64 *u64;
       int64 *i64;
       float *sr;
       double *dr;
       char es[32];
    
       memset(&usdo, 0, 128);
       ec_SDOread(slave, index, subidx, FALSE, &l, &usdo, EC_TIMEOUTRXM);
       if (EcatError)
       {
          return ec_elist2string();
       }
       else
       {
          switch(dtype)
          {
             case ECT_BOOLEAN:
                u8 = (uint8*) &usdo[0];
                if (*u8) sprintf(hstr, "TRUE");
                 else sprintf(hstr, "FALSE");
                break;
             case ECT_INTEGER8:
                i8 = (int8*) &usdo[0];
                sprintf(hstr, "0x%2.2x %d", *i8, *i8);
                break;
             case ECT_INTEGER16:
                i16 = (int16*) &usdo[0];
                sprintf(hstr, "0x%4.4x %d", *i16, *i16);
                break;
             case ECT_INTEGER32:
             case ECT_INTEGER24:
                i32 = (int32*) &usdo[0];
                sprintf(hstr, "0x%8.8x %d", *i32, *i32);
                break;
             case ECT_INTEGER64:
                i64 = (int64*) &usdo[0];
                //sprintf(hstr, "0x%16.16"PRIx64" %"PRId64, *i64, *i64);
                break;
             case ECT_UNSIGNED8:
                u8 = (uint8*) &usdo[0];
                sprintf(hstr, "0x%2.2x %u", *u8, *u8);
                break;
             case ECT_UNSIGNED16:
                u16 = (uint16*) &usdo[0];
                sprintf(hstr, "0x%4.4x %u", *u16, *u16);
                break;
             case ECT_UNSIGNED32:
             case ECT_UNSIGNED24:
                u32 = (uint32*) &usdo[0];
                sprintf(hstr, "0x%8.8x %u", *u32, *u32);
                break;
             case ECT_UNSIGNED64:
                u64 = (uint64*) &usdo[0];
                //sprintf(hstr, "0x%16.16"PRIx64" %"PRIu64, *u64, *u64);
                break;
             case ECT_REAL32:
                sr = (float*) &usdo[0];
                sprintf(hstr, "%f", *sr);
                break;
             case ECT_REAL64:
                dr = (double*) &usdo[0];
                sprintf(hstr, "%f", *dr);
                break;
             case ECT_BIT1:
             case ECT_BIT2:
             case ECT_BIT3:
             case ECT_BIT4:
             case ECT_BIT5:
             case ECT_BIT6:
             case ECT_BIT7:
             case ECT_BIT8:
                u8 = (uint8*) &usdo[0];
                sprintf(hstr, "0x%x", *u8);
                break;
             case ECT_VISIBLE_STRING:
                strcpy(hstr, usdo);
                break;
             case ECT_OCTET_STRING:
                hstr[0] = 0x00;
                for (i = 0 ; i < l ; i++)
                {
                   sprintf(es, "0x%2.2x ", usdo[i]);
                   strcat( hstr, es);
                }
                break;
             default:
                sprintf(hstr, "Unknown type");
          }
          return hstr;
       }
    }
    
    /** Read PDO assign structure */
    int si_PDOassign(uint16 slave, uint16 PDOassign, int mapoffset, int bitoffset)
    {
        uint16 idxloop, nidx, subidxloop, rdat, idx, subidx;
        uint8 subcnt;
        int wkc, bsize = 0, rdl;
        int32 rdat2;
        uint8 bitlen, obj_subidx;
        uint16 obj_idx;
        int abs_offset, abs_bit;
    
        rdl = sizeof(rdat); rdat = 0;
        /* read PDO assign subindex 0 ( = number of PDO's) */
        wkc = ec_SDOread(slave, PDOassign, 0x00, FALSE, &rdl, &rdat, EC_TIMEOUTRXM);
        rdat = etohs(rdat);
        /* positive result from slave ? */
        if ((wkc > 0) && (rdat > 0))
        {
            /* number of available sub indexes */
            nidx = rdat;
            bsize = 0;
            /* read all PDO's */
            for (idxloop = 1; idxloop <= nidx; idxloop++)
            {
                rdl = sizeof(rdat); rdat = 0;
                /* read PDO assign */
                wkc = ec_SDOread(slave, PDOassign, (uint8)idxloop, FALSE, &rdl, &rdat, EC_TIMEOUTRXM);
                /* result is index of PDO */
                idx = etohl(rdat);
                if (idx > 0)
                {
                    rdl = sizeof(subcnt); subcnt = 0;
                    /* read number of subindexes of PDO */
                    wkc = ec_SDOread(slave,idx, 0x00, FALSE, &rdl, &subcnt, EC_TIMEOUTRXM);
                    subidx = subcnt;
                    /* for each subindex */
                    for (subidxloop = 1; subidxloop <= subidx; subidxloop++)
                    {
                        rdl = sizeof(rdat2); rdat2 = 0;
                        /* read SDO that is mapped in PDO */
                        wkc = ec_SDOread(slave, idx, (uint8)subidxloop, FALSE, &rdl, &rdat2, EC_TIMEOUTRXM);
                        rdat2 = etohl(rdat2);
                        /* extract bitlength of SDO */
                        bitlen = LO_BYTE(rdat2);
                        bsize += bitlen;
                        obj_idx = (uint16)(rdat2 >> 16);
                        obj_subidx = (uint8)((rdat2 >> 8) & 0x000000ff);
                        abs_offset = mapoffset + (bitoffset / 8);
                        abs_bit = bitoffset % 8;
                        ODlist.Slave = slave;
                        ODlist.Index[0] = obj_idx;
                        OElist.Entries = 0;
                        wkc = 0;
                        /* read object entry from dictionary if not a filler (0x0000:0x00) */
                        if(obj_idx || obj_subidx)
                            wkc = ec_readOEsingle(0, obj_subidx, &ODlist, &OElist);
                        printf("  [0x%4.4X.%1d] 0x%4.4X:0x%2.2X 0x%2.2X", abs_offset, abs_bit, obj_idx, obj_subidx, bitlen);
                        if((wkc > 0) && OElist.Entries)
                        {
                            printf(" %-12s %s\n", dtype2string(OElist.DataType[obj_subidx]), OElist.Name[obj_subidx]);
                        }
                        else
                            printf("\n");
                        bitoffset += bitlen;
                    };
                };
            };
        };
        /* return total found bitlength (PDO) */
        return bsize;
    }
    
    int si_map_sdo(int slave)
    {
        int wkc, rdl;
        int retVal = 0;
        uint8 nSM, iSM, tSM;
        int Tsize, outputs_bo, inputs_bo;
        uint8 SMt_bug_add;
    
        printf("PDO mapping according to CoE :\n");
        SMt_bug_add = 0;
        outputs_bo = 0;
        inputs_bo = 0;
        rdl = sizeof(nSM); nSM = 0;
        /* read SyncManager Communication Type object count */
        wkc = ec_SDOread(slave, ECT_SDO_SMCOMMTYPE, 0x00, FALSE, &rdl, &nSM, EC_TIMEOUTRXM);
        /* positive result from slave ? */
        if ((wkc > 0) && (nSM > 2))
        {
            /* make nSM equal to number of defined SM */
            nSM--;
            /* limit to maximum number of SM defined, if true the slave can't be configured */
            if (nSM > EC_MAXSM)
                nSM = EC_MAXSM;
            /* iterate for every SM type defined */
            for (iSM = 2 ; iSM <= nSM ; iSM++)
            {
                rdl = sizeof(tSM); tSM = 0;
                /* read SyncManager Communication Type */
                wkc = ec_SDOread(slave, ECT_SDO_SMCOMMTYPE, iSM + 1, FALSE, &rdl, &tSM, EC_TIMEOUTRXM);
                if (wkc > 0)
                {
                    if((iSM == 2) && (tSM == 2)) // SM2 has type 2 == mailbox out, this is a bug in the slave!
                    {
                        SMt_bug_add = 1; // try to correct, this works if the types are 0 1 2 3 and should be 1 2 3 4
                        printf("Activated SM type workaround, possible incorrect mapping.\n");
                    }
                    if(tSM)
                        tSM += SMt_bug_add; // only add if SMt > 0
    
                    if (tSM == 3) // outputs
                    {
                        /* read the assign RXPDO */
                        printf("  SM%1d outputs\n     addr b   index: sub bitl data_type    name\n", iSM);
                        Tsize = si_PDOassign(slave, ECT_SDO_PDOASSIGN + iSM, (int)(ec_slave[slave].outputs - (uint8 *)&IOmap[0]), outputs_bo );
                        outputs_bo += Tsize;
                    }
                    if (tSM == 4) // inputs
                    {
                        /* read the assign TXPDO */
                        printf("  SM%1d inputs\n     addr b   index: sub bitl data_type    name\n", iSM);
                        Tsize = si_PDOassign(slave, ECT_SDO_PDOASSIGN + iSM, (int)(ec_slave[slave].inputs - (uint8 *)&IOmap[0]), inputs_bo );
                        inputs_bo += Tsize;
                    }
                }
            }
        }
    
        /* found some I/O bits ? */
        if ((outputs_bo > 0) || (inputs_bo > 0))
            retVal = 1;
        return retVal;
    }
    
    int si_siiPDO(uint16 slave, uint8 t, int mapoffset, int bitoffset)
    {
        uint16 a , w, c, e, er, Size;
        uint8 eectl;
        uint16 obj_idx;
        uint8 obj_subidx;
        uint8 obj_name;
        uint8 obj_datatype;
        uint8 bitlen;
        int totalsize;
        ec_eepromPDOt eepPDO;
        ec_eepromPDOt *PDO;
        int abs_offset, abs_bit;
        char str_name[EC_MAXNAME + 1];
    
        eectl = ec_slave[slave].eep_pdi;
        Size = 0;
        totalsize = 0;
        PDO = &eepPDO;
        PDO->nPDO = 0;
        PDO->Length = 0;
        PDO->Index[1] = 0;
        for (c = 0 ; c < EC_MAXSM ; c++) PDO->SMbitsize[c] = 0;
        if (t > 1)
            t = 1;
        PDO->Startpos = ec_siifind(slave, ECT_SII_PDO + t);
        if (PDO->Startpos > 0)
        {
            a = PDO->Startpos;
            w = ec_siigetbyte(slave, a++);
            w += (ec_siigetbyte(slave, a++) << 8);
            PDO->Length = w;
            c = 1;
            /* traverse through all PDOs */
            do
            {
                PDO->nPDO++;
                PDO->Index[PDO->nPDO] = ec_siigetbyte(slave, a++);
                PDO->Index[PDO->nPDO] += (ec_siigetbyte(slave, a++) << 8);
                PDO->BitSize[PDO->nPDO] = 0;
                c++;
                /* number of entries in PDO */
                e = ec_siigetbyte(slave, a++);
                PDO->SyncM[PDO->nPDO] = ec_siigetbyte(slave, a++);
                a++;
                obj_name = ec_siigetbyte(slave, a++);
                a += 2;
                c += 2;
                if (PDO->SyncM[PDO->nPDO] < EC_MAXSM) /* active and in range SM? */
                {
                    str_name[0] = 0;
                    if(obj_name)
                      ec_siistring(str_name, slave, obj_name);
                    if (t)
                      printf("  SM%1d RXPDO 0x%4.4X %s\n", PDO->SyncM[PDO->nPDO], PDO->Index[PDO->nPDO], str_name);
                    else
                      printf("  SM%1d TXPDO 0x%4.4X %s\n", PDO->SyncM[PDO->nPDO], PDO->Index[PDO->nPDO], str_name);
                    printf("     addr b   index: sub bitl data_type    name\n");
                    /* read all entries defined in PDO */
                    for (er = 1; er <= e; er++)
                    {
                        c += 4;
                        obj_idx = ec_siigetbyte(slave, a++);
                        obj_idx += (ec_siigetbyte(slave, a++) << 8);
                        obj_subidx = ec_siigetbyte(slave, a++);
                        obj_name = ec_siigetbyte(slave, a++);
                        obj_datatype = ec_siigetbyte(slave, a++);
                        bitlen = ec_siigetbyte(slave, a++);
                        abs_offset = mapoffset + (bitoffset / 8);
                        abs_bit = bitoffset % 8;
    
                        PDO->BitSize[PDO->nPDO] += bitlen;
                        a += 2;
    
                        str_name[0] = 0;
                        if(obj_name)
                          ec_siistring(str_name, slave, obj_name);
    
                        printf("  [0x%4.4X.%1d] 0x%4.4X:0x%2.2X 0x%2.2X", abs_offset, abs_bit, obj_idx, obj_subidx, bitlen);
                        printf(" %-12s %s\n", dtype2string(obj_datatype), str_name);
                        bitoffset += bitlen;
                        totalsize += bitlen;
                    }
                    PDO->SMbitsize[ PDO->SyncM[PDO->nPDO] ] += PDO->BitSize[PDO->nPDO];
                    Size += PDO->BitSize[PDO->nPDO];
                    c++;
                }
                else /* PDO deactivated because SM is 0xff or > EC_MAXSM */
                {
                    c += 4 * e;
                    a += 8 * e;
                    c++;
                }
                if (PDO->nPDO >= (EC_MAXEEPDO - 1)) c = PDO->Length; /* limit number of PDO entries in buffer */
            }
            while (c < PDO->Length);
        }
        if (eectl) ec_eeprom2pdi(slave); /* if eeprom control was previously pdi then restore */
        return totalsize;
    }
    
    int si_map_sii(int slave)
    {
        int retVal = 0;
        int Tsize, outputs_bo, inputs_bo;
    
        printf("PDO mapping according to SII :\n");
    
        outputs_bo = 0;
        inputs_bo = 0;
        /* read the assign RXPDOs */
        Tsize = si_siiPDO(slave, 1, (int)(ec_slave[slave].outputs - (uint8*)&IOmap), outputs_bo );
        outputs_bo += Tsize;
        /* read the assign TXPDOs */
        Tsize = si_siiPDO(slave, 0, (int)(ec_slave[slave].inputs - (uint8*)&IOmap), inputs_bo );
        inputs_bo += Tsize;
        /* found some I/O bits ? */
        if ((outputs_bo > 0) || (inputs_bo > 0))
            retVal = 1;
        return retVal;
    }
    
    void si_sdo(int cnt)
    {
        int i, j;
    
        ODlist.Entries = 0;
        memset(&ODlist, 0, sizeof(ODlist));
        if( ec_readODlist(cnt, &ODlist))
        {
            printf(" CoE Object Description found, %d entries.\n",ODlist.Entries);
            for( i = 0 ; i < ODlist.Entries ; i++)
            {
                ec_readODdescription(i, &ODlist);
                while(EcatError) printf("%s", ec_elist2string());
                printf(" Index: %4.4x Datatype: %4.4x Objectcode: %2.2x Name: %s\n",
                    ODlist.Index[i], ODlist.DataType[i], ODlist.ObjectCode[i], ODlist.Name[i]);
                memset(&OElist, 0, sizeof(OElist));
                ec_readOE(i, &ODlist, &OElist);
                while(EcatError) printf("%s", ec_elist2string());
                for( j = 0 ; j < ODlist.MaxSub[i]+1 ; j++)
                {
                    if ((OElist.DataType[j] > 0) && (OElist.BitLength[j] > 0))
                    {
                        printf("  Sub: %2.2x Datatype: %4.4x Bitlength: %4.4x Obj.access: %4.4x Name: %s\n",
                            j, OElist.DataType[j], OElist.BitLength[j], OElist.ObjAccess[j], OElist.Name[j]);
                        if ((OElist.ObjAccess[j] & 0x0007))
                        {
                            printf("          Value :%s\n", SDO2string(cnt, ODlist.Index[i], j, OElist.DataType[j]));
                        }
                    }
                }
            }
        }
        else
        {
            while(EcatError) printf("%s", ec_elist2string());
        }
    }
    
    void slaveinfo(char *ifname)
    {
        int cnt, i, j, nSM;
        uint16 ssigen;
        int expectedWKC;
        ecx_contextt* contex;
    
        printf("Starting slaveinfo\n");
    
        if(ec_init(ifname)) // 初始化SOEM库,绑定soket到网口
        {
            printf("ec_init on %s succeeded.\n",ifname);
            if(ec_config(FALSE, &IOmap) > 0) // 枚举所有从站的信息,并配置从站,保存到IOmap中
            {
                ec_configdc();
                while(EcatError)
                {
                    cout<< ec_elist2string() << endl;
                }
                printf("%d slaves found and configured.\n",ec_slavecount);
                expectedWKC = (ec_group[0].outputsWKC * 2) + ec_group[0].inputsWKC;
                printf("Calculated workcounter %d\n", expectedWKC);
                ec_statecheck(0, EC_STATE_SAFE_OP,  EC_TIMEOUTSTATE * 3);
                if (ec_slave[0].state != EC_STATE_SAFE_OP )
                {
                    printf("Not all slaves reached safe operational state.\n");
                    ec_readstate();
                    for(i = 1; i<=ec_slavecount ; i++)
                    {
                       if(ec_slave[i].state != EC_STATE_SAFE_OP)
                       {
                           printf("Slave %d State=%2x StatusCode=%4x : %s\n",
                                                i, ec_slave[i].state, ec_slave[i].ALstatuscode, ec_ALstatuscode2string(ec_slave[i].ALstatuscode));
                       }
                    }
                }
    
                ec_readstate();
                for( cnt = 1 ; cnt <= ec_slavecount ; cnt++)
                {
                   printf("\nSlave:%d\n Name:%s\n Output size: %dbits\n Input size: %dbits\n State: %d\n Delay: %d[ns]\n Has DC: %d\n",
                         cnt, ec_slave[cnt].name, ec_slave[cnt].Obits, ec_slave[cnt].Ibits,
                         ec_slave[cnt].state, ec_slave[cnt].pdelay, ec_slave[cnt].hasdc);
                   if (ec_slave[cnt].hasdc) printf(" DCParentport:%d\n", ec_slave[cnt].parentport);
                   printf(" Activeports:%d.%d.%d.%d\n", (ec_slave[cnt].activeports & 0x01) > 0 ,
                                                (ec_slave[cnt].activeports & 0x02) > 0 ,
                                                (ec_slave[cnt].activeports & 0x04) > 0 ,
                                                (ec_slave[cnt].activeports & 0x08) > 0 );
                   printf(" Configured address: %4.4x\n", ec_slave[cnt].configadr);
                   printf(" Man: %8.8x ID: %8.8x Rev: %8.8x\n", (int)ec_slave[cnt].eep_man, (int)ec_slave[cnt].eep_id, (int)ec_slave[cnt].eep_rev);
                   for(nSM = 0 ; nSM < EC_MAXSM ; nSM++)
                   {
                      if(ec_slave[cnt].SM[nSM].StartAddr > 0)
                         printf(" SM%1d A:%4.4x L:%4d F:%8.8x Type:%d\n",nSM, ec_slave[cnt].SM[nSM].StartAddr, ec_slave[cnt].SM[nSM].SMlength,
                                (int)ec_slave[cnt].SM[nSM].SMflags, ec_slave[cnt].SMtype[nSM]);
                   }
                   for(j = 0 ; j < ec_slave[cnt].FMMUunused ; j++)
                   {
                      printf(" FMMU%1d Ls:%8.8x Ll:%4d Lsb:%d Leb:%d Ps:%4.4x Psb:%d Ty:%2.2x Act:%2.2x\n", j,
                              (int)ec_slave[cnt].FMMU[j].LogStart, ec_slave[cnt].FMMU[j].LogLength, ec_slave[cnt].FMMU[j].LogStartbit,
                              ec_slave[cnt].FMMU[j].LogEndbit, ec_slave[cnt].FMMU[j].PhysStart, ec_slave[cnt].FMMU[j].PhysStartBit,
                              ec_slave[cnt].FMMU[j].FMMUtype, ec_slave[cnt].FMMU[j].FMMUactive);
                   }
                   printf(" FMMUfunc 0:%d 1:%d 2:%d 3:%d\n",
                            ec_slave[cnt].FMMU0func, ec_slave[cnt].FMMU1func, ec_slave[cnt].FMMU2func, ec_slave[cnt].FMMU3func);
                   printf(" MBX length wr: %d rd: %d MBX protocols : %2.2x\n", ec_slave[cnt].mbx_l, ec_slave[cnt].mbx_rl, ec_slave[cnt].mbx_proto);
                   ssigen = ec_siifind(cnt, ECT_SII_GENERAL);
                   /* SII general section */
                   if (ssigen)
                   {
                      ec_slave[cnt].CoEdetails = ec_siigetbyte(cnt, ssigen + 0x07);
                      ec_slave[cnt].FoEdetails = ec_siigetbyte(cnt, ssigen + 0x08);
                      ec_slave[cnt].EoEdetails = ec_siigetbyte(cnt, ssigen + 0x09);
                      ec_slave[cnt].SoEdetails = ec_siigetbyte(cnt, ssigen + 0x0a);
                      if((ec_siigetbyte(cnt, ssigen + 0x0d) & 0x02) > 0)
                      {
                         ec_slave[cnt].blockLRW = 1;
                         ec_slave[0].blockLRW++;
                      }
                      ec_slave[cnt].Ebuscurrent = ec_siigetbyte(cnt, ssigen + 0x0e);
                      ec_slave[cnt].Ebuscurrent += ec_siigetbyte(cnt, ssigen + 0x0f) << 8;
                      ec_slave[0].Ebuscurrent += ec_slave[cnt].Ebuscurrent;
                   }
                   printf(" CoE details: %2.2x FoE details: %2.2x EoE details: %2.2x SoE details: %2.2x\n",
                           ec_slave[cnt].CoEdetails, ec_slave[cnt].FoEdetails, ec_slave[cnt].EoEdetails, ec_slave[cnt].SoEdetails);
                   printf(" Ebus current: %d[mA]\n only LRD/LWR:%d\n",
                           ec_slave[cnt].Ebuscurrent, ec_slave[cnt].blockLRW);
                   if ((ec_slave[cnt].mbx_proto & ECT_MBXPROT_COE) && printSDO)
                   {
                           si_sdo(cnt);
                   }
    
                   if (ec_slave[cnt].mbx_proto & ECT_MBXPROT_COE)
                       si_map_sdo(cnt);
                   else
                       si_map_sii(cnt);
    
                }
    
            }
        }
        else
        {
        }
    }
    
    int main()
    {
        char* ifbuf = "\\Device\\NPF_{A837AD34-3738-42FF-8E0B-F5B0BE69ABD6}"; // 网口设备号
        printf("SOEM (Simple Open EtherCAT Master)\nSlaveinfo\n");
        slaveinfo(ifbuf);
        return 0;
    }
相关推荐
冷眼看人间恩怨1 分钟前
【Qt笔记】QDockWidget控件详解
c++·笔记·qt·qdockwidget
云空5 小时前
《QT 5.14.1 搭建 opencv 环境全攻略》
开发语言·qt·opencv
小老鼠不吃猫6 小时前
力学笃行(二)Qt 示例程序运行
开发语言·qt
晓纪同学8 小时前
QT创建一个模板槽和信号刷新UI
开发语言·qt·ui
arriettyandray9 小时前
MFC/C++学习系列之简单记录4——错误解决与错误提示
mfc
sam-zy9 小时前
MFC用List Control 和Picture控件实现界面切换效果
c++·mfc
arriettyandray9 小时前
MFC/C++学习系列之简单记录6
mfc
爱码小白9 小时前
PyQt5 学习方法之悟道
开发语言·qt·学习方法
arriettyandray13 小时前
MFC/C++学习系列之简单记录——序列化机制
mfc
金士顿19 小时前
MFC 文档模板 每个文档模板需要实例化吧
c++·mfc