举例说明 如何判断Spark作业的瓶颈

  • 首先看哪个Job执行时间长:
    例如下图中明显Job 2时间执行最长,这个对rdd作业是直观有效的。
    对于sql作业可能不准确,sql需要关注stage的详情耗时。
  • 然后看执行时间长的Job中哪个stage执行时间长:
    明显stage 7和stage 13执行时间长(这个不一定百分百准确,这个包含等待调度的时间,可以点击stage链接查看详情耗时)

    所以stage7的REPARTITION和stage13的join是瓶颈。
    stage7是不必要的,因为join是会根据key再分区,REPARTITION没有意义。
  • 怎么确定stage 13到底是什么代码导致的慢呢?

    途中有四个算子,reduceByKey、Join都有可能导致数据倾斜,flatMap和map可能导致数据膨胀或者自定义逻辑慢,当前上图中的map是 HDFSIO的逻辑,比较简单。
    • 数据倾斜:

      没有明显倾斜,但是:
      第一:执行时间有长有短:通过分析数据,基本与gc时间有关;
      第二:gc时间差异明显:可能与自定义代码逻辑有关系;
      第三:内存溢出有大有小:可能与聚合逻辑有关系;
      第四:内存使用峰值有明显区别。
      综上,怀疑的范围主要是:reduceByKey的处理逻辑、join个别key可能比较集中一点点、flatmap逻辑存在问题导致内存紧张
      还有一种情况是代码逻辑中有慢操作,例如请求外部接口、迭代计算、复杂低效的逻辑都可以通过运行时的threaddump或者结束后的pmap.log来判断。具体可以看:https://blog.csdn.net/weixin_38643743/article/details/139721055
相关推荐
milanyangbo6 分钟前
从硬盘I/O到网络传输:Kafka与RocketMQ读写模型及零拷贝技术深度对比
java·网络·分布式·架构·kafka·rocketmq
云飞云共享云桌面18 分钟前
佛山某机械加工设备工厂10个SolidWorks共享一台服务器的软硬件
大数据·运维·服务器·前端·网络·人工智能·性能优化
有梦想的攻城狮25 分钟前
Rabbitmq在死信队列中的队头阻塞问题
分布式·rabbitmq·死信队列·延迟队列
Wang's Blog1 小时前
Elastic Stack梳理:深度解析Elasticsearch分布式查询机制与相关性算分优化实践
分布式·elasticsearch
bxlj_jcj1 小时前
分布式ID方案、雪花算法与时钟回拨问题
分布式·算法
百胜软件@百胜软件1 小时前
财务对账提速80%:高并发场景下的快消网销数据治理实践
大数据·人工智能·零售
java1234_小锋1 小时前
Kafka与RabbitMQ相比有什么优势?
分布式·kafka·rabbitmq
科技与数码2 小时前
国产MATLAB替代软件的关键能力与生态发展现状
大数据·人工智能·matlab
梦里不知身是客112 小时前
flink运行的一个报错
大数据·flink
松☆2 小时前
Flutter 与 OpenHarmony 数据持久化协同方案:从 Shared Preferences 到分布式数据管理
分布式·flutter