举例说明 如何判断Spark作业的瓶颈

  • 首先看哪个Job执行时间长:
    例如下图中明显Job 2时间执行最长,这个对rdd作业是直观有效的。
    对于sql作业可能不准确,sql需要关注stage的详情耗时。
  • 然后看执行时间长的Job中哪个stage执行时间长:
    明显stage 7和stage 13执行时间长(这个不一定百分百准确,这个包含等待调度的时间,可以点击stage链接查看详情耗时)

    所以stage7的REPARTITION和stage13的join是瓶颈。
    stage7是不必要的,因为join是会根据key再分区,REPARTITION没有意义。
  • 怎么确定stage 13到底是什么代码导致的慢呢?

    途中有四个算子,reduceByKey、Join都有可能导致数据倾斜,flatMap和map可能导致数据膨胀或者自定义逻辑慢,当前上图中的map是 HDFSIO的逻辑,比较简单。
    • 数据倾斜:

      没有明显倾斜,但是:
      第一:执行时间有长有短:通过分析数据,基本与gc时间有关;
      第二:gc时间差异明显:可能与自定义代码逻辑有关系;
      第三:内存溢出有大有小:可能与聚合逻辑有关系;
      第四:内存使用峰值有明显区别。
      综上,怀疑的范围主要是:reduceByKey的处理逻辑、join个别key可能比较集中一点点、flatmap逻辑存在问题导致内存紧张
      还有一种情况是代码逻辑中有慢操作,例如请求外部接口、迭代计算、复杂低效的逻辑都可以通过运行时的threaddump或者结束后的pmap.log来判断。具体可以看:https://blog.csdn.net/weixin_38643743/article/details/139721055
相关推荐
拓端研究室43 分钟前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
武子康1 小时前
大数据-30 ZooKeeper Java-API 监听节点 创建、删除节点
大数据·后端·zookeeper
小手WA凉1 小时前
Hadoop之MapReduce
大数据·mapreduce
AgeClub2 小时前
服务600+养老社区,Rendever如何通过“VR+养老”缓解老年孤独?
大数据·人工智能
SeaTunnel3 小时前
SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
大数据·开源·bug·数据集成·seatunnel
hjs_deeplearning3 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
小毛驴8503 小时前
Windows 环境下设置 RabbitMQ 的 consumer_timeout 参数
windows·分布式·rabbitmq
时序数据说3 小时前
Java类加载机制及关于时序数据库IoTDB排查
java·大数据·数据库·物联网·时序数据库·iotdb
述雾学java5 小时前
Spring Cloud 服务追踪实战:使用 Zipkin 构建分布式链路追踪
分布式·spring·spring cloud·zipkin
大只鹅5 小时前
分布式部署下如何做接口防抖---使用分布式锁
redis·分布式