举例说明 如何判断Spark作业的瓶颈

  • 首先看哪个Job执行时间长:
    例如下图中明显Job 2时间执行最长,这个对rdd作业是直观有效的。
    对于sql作业可能不准确,sql需要关注stage的详情耗时。
  • 然后看执行时间长的Job中哪个stage执行时间长:
    明显stage 7和stage 13执行时间长(这个不一定百分百准确,这个包含等待调度的时间,可以点击stage链接查看详情耗时)

    所以stage7的REPARTITION和stage13的join是瓶颈。
    stage7是不必要的,因为join是会根据key再分区,REPARTITION没有意义。
  • 怎么确定stage 13到底是什么代码导致的慢呢?

    途中有四个算子,reduceByKey、Join都有可能导致数据倾斜,flatMap和map可能导致数据膨胀或者自定义逻辑慢,当前上图中的map是 HDFSIO的逻辑,比较简单。
    • 数据倾斜:

      没有明显倾斜,但是:
      第一:执行时间有长有短:通过分析数据,基本与gc时间有关;
      第二:gc时间差异明显:可能与自定义代码逻辑有关系;
      第三:内存溢出有大有小:可能与聚合逻辑有关系;
      第四:内存使用峰值有明显区别。
      综上,怀疑的范围主要是:reduceByKey的处理逻辑、join个别key可能比较集中一点点、flatmap逻辑存在问题导致内存紧张
      还有一种情况是代码逻辑中有慢操作,例如请求外部接口、迭代计算、复杂低效的逻辑都可以通过运行时的threaddump或者结束后的pmap.log来判断。具体可以看:https://blog.csdn.net/weixin_38643743/article/details/139721055
相关推荐
商业讯网126 分钟前
国家电投海外项目运营经验丰富
大数据·人工智能·区块链
面向Google编程26 分钟前
Flink源码阅读:Mailbox线程模型
大数据·flink
Elastic 中国社区官方博客2 小时前
使用 Elastic 中的 OpenTelemetry 为 Nginx 实现端到端分布式追踪的实用指南
大数据·运维·分布式·elasticsearch·搜索引擎·信息可视化·全文检索
aliprice2 小时前
逆向拆解:用速卖通图片搜索破解竞品设计,找到你的差异化定价空间
大数据·跨境电商·电商
hg01182 小时前
埃及:在变局中重塑发展韧性
大数据·人工智能·物联网
win x2 小时前
Redis 分布式锁
数据库·redis·分布式
向量引擎小橙3 小时前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
飞Link3 小时前
【大数据】SparkSQL常用操作
大数据·数据挖掘·spark
m0_466525293 小时前
东软添翼AI 2.0获评医疗健康标杆AI Agent TOP10
大数据·人工智能
光算科技4 小时前
AI重写工具导致‘文本湍流’特征|如何人工消除算法识别标记
大数据·人工智能·算法