举例说明 如何判断Spark作业的瓶颈

  • 首先看哪个Job执行时间长:
    例如下图中明显Job 2时间执行最长,这个对rdd作业是直观有效的。
    对于sql作业可能不准确,sql需要关注stage的详情耗时。
  • 然后看执行时间长的Job中哪个stage执行时间长:
    明显stage 7和stage 13执行时间长(这个不一定百分百准确,这个包含等待调度的时间,可以点击stage链接查看详情耗时)

    所以stage7的REPARTITION和stage13的join是瓶颈。
    stage7是不必要的,因为join是会根据key再分区,REPARTITION没有意义。
  • 怎么确定stage 13到底是什么代码导致的慢呢?

    途中有四个算子,reduceByKey、Join都有可能导致数据倾斜,flatMap和map可能导致数据膨胀或者自定义逻辑慢,当前上图中的map是 HDFSIO的逻辑,比较简单。
    • 数据倾斜:

      没有明显倾斜,但是:
      第一:执行时间有长有短:通过分析数据,基本与gc时间有关;
      第二:gc时间差异明显:可能与自定义代码逻辑有关系;
      第三:内存溢出有大有小:可能与聚合逻辑有关系;
      第四:内存使用峰值有明显区别。
      综上,怀疑的范围主要是:reduceByKey的处理逻辑、join个别key可能比较集中一点点、flatmap逻辑存在问题导致内存紧张
      还有一种情况是代码逻辑中有慢操作,例如请求外部接口、迭代计算、复杂低效的逻辑都可以通过运行时的threaddump或者结束后的pmap.log来判断。具体可以看:https://blog.csdn.net/weixin_38643743/article/details/139721055
相关推荐
sakoba7 小时前
flink消费pulsar
大数据·flink·pulsar
云老大TG:@yunlaoda3609 小时前
如何进行华为云国际站代理商跨Region适配?
大数据·数据库·华为云·负载均衡
Wang's Blog9 小时前
Kafka: 消费者核心机制
分布式·kafka
字节数据平台10 小时前
刚刚,火山引擎多模态数据湖解决方案发布大数据运维Agent
大数据·运维·火山引擎
YangYang9YangYan11 小时前
2026高职会计电算化专业高价值技能证书
大数据·学习·区块链
老蒋新思维11 小时前
从「流量算法」到「增长算法」:AI智能体如何重构企业增长的内在逻辑
大数据·网络·人工智能·重构·创始人ip·创客匠人·知识变现
五度易链-区域产业数字化管理平台11 小时前
大数据与 AI 赋能招商全流程:五度易链平台的技术架构与实践应用解析
大数据·人工智能
学海_无涯_苦作舟11 小时前
分布式事务的解决方案
分布式
Moonbeam Community12 小时前
Polkadot 2025:从协议工程到可用的去中心化云平台
大数据·web3·去中心化·区块链·polkadot
阿里云大数据AI技术12 小时前
DataWorks 又又又升级了,这次我们通过 Arrow 列存格式让数据同步速度提升10倍!
大数据·人工智能