举例说明 如何判断Spark作业的瓶颈

  • 首先看哪个Job执行时间长:
    例如下图中明显Job 2时间执行最长,这个对rdd作业是直观有效的。
    对于sql作业可能不准确,sql需要关注stage的详情耗时。
  • 然后看执行时间长的Job中哪个stage执行时间长:
    明显stage 7和stage 13执行时间长(这个不一定百分百准确,这个包含等待调度的时间,可以点击stage链接查看详情耗时)

    所以stage7的REPARTITION和stage13的join是瓶颈。
    stage7是不必要的,因为join是会根据key再分区,REPARTITION没有意义。
  • 怎么确定stage 13到底是什么代码导致的慢呢?

    途中有四个算子,reduceByKey、Join都有可能导致数据倾斜,flatMap和map可能导致数据膨胀或者自定义逻辑慢,当前上图中的map是 HDFSIO的逻辑,比较简单。
    • 数据倾斜:

      没有明显倾斜,但是:
      第一:执行时间有长有短:通过分析数据,基本与gc时间有关;
      第二:gc时间差异明显:可能与自定义代码逻辑有关系;
      第三:内存溢出有大有小:可能与聚合逻辑有关系;
      第四:内存使用峰值有明显区别。
      综上,怀疑的范围主要是:reduceByKey的处理逻辑、join个别key可能比较集中一点点、flatmap逻辑存在问题导致内存紧张
      还有一种情况是代码逻辑中有慢操作,例如请求外部接口、迭代计算、复杂低效的逻辑都可以通过运行时的threaddump或者结束后的pmap.log来判断。具体可以看:https://blog.csdn.net/weixin_38643743/article/details/139721055
相关推荐
回家路上绕了弯6 分钟前
分布式锁原理深度解析:从理论到实践
分布式·后端
梦里不知身是客1113 分钟前
flume的数据模型介绍
大数据·flume
winfield82138 分钟前
推荐/搜索系统的召回、精排、粗排、打散这四个环节都是做什么的?
大数据·人工智能
heartbeat..1 小时前
深入理解 Redisson:分布式锁原理、特性与生产级应用(Java 版)
java·分布式·线程·redisson·
写代码的【黑咖啡】1 小时前
大数据中的数据同步预处理:保障数据质量的第一道防线
大数据
Hello.Reader1 小时前
Flink SQL Time Travel用 FOR SYSTEM_TIME AS OF 查询历史快照
大数据·sql·flink
2501_924794901 小时前
企业AI转型为何难?——从“不敢用”到“用得稳”的路径重构
大数据·人工智能·重构
Tezign_space1 小时前
小红书内容运营工具怎么选?专业视角拆解优质工具核心标准
大数据·人工智能·内容运营
康实训1 小时前
养老实训室建设标准指南
大数据·人工智能·实训室·养老实训室·实训室建设
semantist@语校3 小时前
第五十五篇|从解释约束到结构化认知:京都国际学院的语言学校Prompt工程化实践
大数据·数据库·人工智能·python·百度·prompt·知识图谱