举例说明 如何判断Spark作业的瓶颈

  • 首先看哪个Job执行时间长:
    例如下图中明显Job 2时间执行最长,这个对rdd作业是直观有效的。
    对于sql作业可能不准确,sql需要关注stage的详情耗时。
  • 然后看执行时间长的Job中哪个stage执行时间长:
    明显stage 7和stage 13执行时间长(这个不一定百分百准确,这个包含等待调度的时间,可以点击stage链接查看详情耗时)

    所以stage7的REPARTITION和stage13的join是瓶颈。
    stage7是不必要的,因为join是会根据key再分区,REPARTITION没有意义。
  • 怎么确定stage 13到底是什么代码导致的慢呢?

    途中有四个算子,reduceByKey、Join都有可能导致数据倾斜,flatMap和map可能导致数据膨胀或者自定义逻辑慢,当前上图中的map是 HDFSIO的逻辑,比较简单。
    • 数据倾斜:

      没有明显倾斜,但是:
      第一:执行时间有长有短:通过分析数据,基本与gc时间有关;
      第二:gc时间差异明显:可能与自定义代码逻辑有关系;
      第三:内存溢出有大有小:可能与聚合逻辑有关系;
      第四:内存使用峰值有明显区别。
      综上,怀疑的范围主要是:reduceByKey的处理逻辑、join个别key可能比较集中一点点、flatmap逻辑存在问题导致内存紧张
      还有一种情况是代码逻辑中有慢操作,例如请求外部接口、迭代计算、复杂低效的逻辑都可以通过运行时的threaddump或者结束后的pmap.log来判断。具体可以看:https://blog.csdn.net/weixin_38643743/article/details/139721055
相关推荐
B站_计算机毕业设计之家13 小时前
python招聘数据 求职就业数据可视化平台 大数据毕业设计 BOSS直聘数据可视化分析系统 Flask框架 Echarts可视化 selenium爬虫技术✅
大数据·python·深度学习·考研·信息可视化·数据分析·flask
袋鼠云数栈13 小时前
官宣!ChunJun 1.16 Release 版本发布!
大数据·经验分享·大模型
源代码•宸13 小时前
分布式缓存-GO(项目整体架构简介、Ubuntu 22.04 64位安装GoLang、安装Docker、解决Go module 的依赖问题)
经验分享·分布式·后端·ubuntu·缓存·docker·golang
九河云14 小时前
跨境电商数字化转型:海外仓库存 AI 预警与多平台订单一体化管理实践
大数据·人工智能·数字化转型
Ttang2314 小时前
【SpringCloud1】从单体架构到分布式系统架构
分布式·spring cloud·架构
新华经济16 小时前
正荣激光焊接机:破解中小型制造场景激光焊接精度与效率困局
大数据·人工智能·制造
嵌入式冰箱16 小时前
“未来杯”2025第五届高校大数据挑战赛赛题【AB题】详细分析
大数据·数学建模
好好研究16 小时前
Git命令
大数据·git·elasticsearch
传感器与混合集成电路16 小时前
精准钻进,高温无阻:随钻测井定向探管如何赋能极限能源勘探
大数据·人工智能·能源
博语小屋16 小时前
生产者消费者模型
linux·分布式·缓存