搜索与图论:所有可达路径(DFS算法)

搜索与图论:所有可达路径(DFS算法)

题目描述

题目描述

给定一个有 n 个节点的有向无环图,节点编号从 1 到 n。请编写一个函数,找出并返回所有从节点 1 到节点 n 的路径。每条路径应以节点编号的列表形式表示。

输入描述

第一行包含两个整数 N,M,表示图中拥有 N 个节点,M 条边

后续 M 行,每行包含两个整数 s 和 t,表示图中的 s 节点与 t 节点中有一条路径

输出描述

输出所有的可达路径,路径中所有节点之间空格隔开,每条路径独占一行,存在多条路径,路径输出的顺序可任意。如果不存在任何一条路径,则输出 -1。

注意输出的序列中,最后一个节点后面没有空格! 例如正确的答案是 1 3 5,而不是 1 3 5 , 5后面没有空格!

输入示例

复制代码
5 5
1 3
3 5
1 2
2 4
4 5

输出示例

复制代码
1 3 5
1 2 4 5

参考代码

邻接表方法

cpp 复制代码
#include <iostream>
#include <cstring>
#include <vector>

using namespace std;

const int N = 510;      // 边数

int n, m;
int h[N], e[N], ne[N], idx;
vector<int> path;
bool flag;              // 用于标记是否存在路径

void add(int a, int b)
{
    e[idx] = b; ne[idx] = h[a]; h[a] = idx; idx++;
}

void dfs(int u)
{
    // 如果到达了终点,输出完整路径
    if (u == n)
    {
        int len = path.size();  // 路径的长度
        for (int i = 0; i < len - 1; i++) printf("%d ", path[i]);
        printf("%d\n", path[len - 1]);
        flag = true;
    }
    
    // 如果没有到达终点,继续深搜,遍历该点的所有邻边
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];       // 邻边的终点
        path.push_back(j);  // 将下一个点加入路径
        dfs(j);             // 递归深搜
        path.pop_back();    // 弹出该邻边的终点,继续遍历下一个邻边
    }
}

int main()
{
    memset(h, -1, sizeof h);
    
    scanf("%d%d", &n, &m);
    
    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }
    
    path.push_back(1);      // 先加入起点
    dfs(1);                 // 从起点开始深搜
    
    if (!flag) puts("-1");
    
    return 0;
}

邻接矩阵方法

cpp 复制代码
#include <iostream>
#include <cstring>
#include <vector>

using namespace std;

const int N = 110;

int n, m;
int g[N][N];
bool flag;
vector<int> path;

void dfs(int u)
{
    // 如果到达了终点,输出完整路径
    if (u == n)
    {
        int len = path.size();  // 路径的长度
        for (int i = 0; i < len - 1; i++) printf("%d ", path[i]);
        printf("%d\n", path[len - 1]);
        flag = true;
    }

    // 如果没有到达终点,继续深搜,遍历该点的所有邻边
    for (int i = 1; i <= n; i++)
    {
        if (g[u][i] == 1)
        {
            path.push_back(i);  // 将下一个点加入路径
            dfs(i);             // 递归深搜
            path.pop_back();    // 弹出该邻边的终点,继续遍历下一个邻边
        }
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    
    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        g[a][b] = 1;                // 值为1代表右边,0代表无边
    }
    
    path.push_back(1);      // 先加入起点
    dfs(1);                 // 从起点开始深搜
    if (!flag) puts("-1");
    
    return 0;
}
相关推荐
金融小师妹4 小时前
应用BERT-GCN跨模态情绪分析:贸易缓和与金价波动的AI归因
大数据·人工智能·算法
广州智造4 小时前
OptiStruct实例:3D实体转子分析
数据库·人工智能·算法·机器学习·数学建模·3d·性能优化
Trent19856 小时前
影楼精修-肤色统一算法解析
图像处理·人工智能·算法·计算机视觉
feifeigo1236 小时前
高光谱遥感图像处理之数据分类的fcm算法
图像处理·算法·分类
北上ing7 小时前
算法练习:19.JZ29 顺时针打印矩阵
算法·leetcode·矩阵
.格子衫.8 小时前
真题卷001——算法备赛
算法
XiaoyaoCarter8 小时前
每日一道leetcode
c++·算法·leetcode·职场和发展·二分查找·深度优先·前缀树
Hygge-star9 小时前
【数据结构】二分查找5.12
java·数据结构·程序人生·算法·学习方法
June`10 小时前
专题二:二叉树的深度搜索(二叉树剪枝)
c++·算法·深度优先·剪枝
好吃的肘子11 小时前
Elasticsearch架构原理
开发语言·算法·elasticsearch·架构·jenkins