Python开发示例——使用Python实现炫酷的数据动态图

前言

数据可视化是通过图形、图表、地图等可视元素将数据呈现出来,以便更容易理解、分析和解释。它是将抽象的数据转化为直观形象的过程,有助于发现数据中的模式、趋势和关系。数据可视化对于数据科学、商业分析、决策制定等领域都至关重要。当我们想用数据描述世界、阐释想法和展示成果时,如果只有单调的文本和数字,很难吸引观众的注意。漂亮的可视化图表有时能够在表达信息上胜过大量文字。

一、 plotly库

Plotly是一款交互式的数据可视化库,支持多种编程语言,包括Python、R、JavaScript等。它可以用于创建各种类型的图表,从简单的折线图和散点图到复杂的热力图和3D图。Plotly的图表具有动态性和交互性,使用户能够在图表中进行缩放、拖动、悬停等操作,以更深入地探索数据。

  1. 安装 Plotly: 在Python中,可以使用以下命令安装Plotly库:

    bash 复制代码
    pip install plotly
  2. 导入 Plotly: 在Python脚本或Jupyter Notebook中,导入Plotly库:

    python 复制代码
    import plotly.graph_objects as go
  3. 创建图表对象: 使用graph_objects模块创建图表对象,例如:

    python 复制代码
    fig = go.Figure()
  4. 添加图表元素: 向图表对象添加不同类型的图表元素,如散点、线条、柱形等。

    python 复制代码
    fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6], mode='markers', name='Scatter'))
  5. 自定义图表: 设置图表的标题、坐标轴标签、布局等。

    python 复制代码
    fig.update_layout(title='My Plotly Chart', xaxis_title='X-axis', yaxis_title='Y-axis')
  6. 显示图表: 在Jupyter Notebook中,可以使用以下命令显示图表:

    python 复制代码
    fig.show()

Plotly还支持通过Dash创建交互式的Web应用程序,可以在数据可视化和用户界面方面提供更高级的功能。Dash是基于Plotly构建的开源框架,用于创建仪表板和数据分析应用。通过使用Plotly,可以轻松创建漂亮、交互式的图表,以更好地理解和传达数据。

二、示例

动画

在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly 动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:

代码如下:

import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,
             y="Entity",
             x="Deaths",
             animation_frame="Year",
             orientation='h',
             range_x=[0, df.Deaths.max()],
             color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor='rgba(0,0,0,0)',
                  plot_bgcolor='rgba(0,0,0,0)',
                  title_text='Evolution of Natural Disasters',
                  showlegend=False)
fig.update_xaxes(title_text='Number of Deaths')
fig.update_yaxes(title_text='')
fig.show()

只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:

import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(
    df,
    x="gdpPercap",
    y="lifeExp",
    animation_frame="year",
    size="pop",
    color="continent",
    hover_name="country",
    log_x=True,
    size_max=55,
    range_x=[100, 100000],
    range_y=[25, 90],

    #   color_continuous_scale=px.colors.sequential.Emrld
)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor='rgba(0,0,0,0)',
                  plot_bgcolor='rgba(0,0,0,0)')

太阳图

太阳图(sunburst chart)是一种可视化 group by 语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。

假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重 group by 语句可以通过可视化来更有效地展示。

这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的 parents 参数)并分配对应的值即可,这在我们案例中即为 group by 语句的输出。

import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
df = px.data.tips()
fig = go.Figure(go.Sunburst(
    labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],
    parents=["", "", "Female", "Female", 'Male', 'Male'],
    values=np.append(
        df.groupby('sex').tip.mean().values,
        df.groupby(['sex', 'time']).tip.mean().values),
    marker=dict(colors=px.colors.sequential.Emrld)),
                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
                                 plot_bgcolor='rgba(0,0,0,0)'))

fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                  title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()

现在我们向这个层次结构再添加一层:

为此,我们再添加另一个涉及三个类别变量的 group by 语句的值。

import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=[
    "Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',
    'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri  ', 'Sat  ', 'Sun  ', 'Fri   ', 'Thu   '
],
                            parents=[
                                "", "", "Female", "Female", 'Male', 'Male',
                                'Dinner', 'Dinner', 'Dinner', 'Dinner',
                                'Lunch', 'Lunch', 'Dinner ', 'Dinner ',
                                'Dinner ', 'Lunch ', 'Lunch '
                            ],
                            values=np.append(
                                np.append(
                                    df.groupby('sex').tip.mean().values,
                                    df.groupby(['sex',
                                                'time']).tip.mean().values,
                                ),
                                df.groupby(['sex', 'time',
                                            'day']).tip.mean().values),
                            marker=dict(colors=px.colors.sequential.Emrld)),
                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
                                 plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                  title_text='Tipping Habbits Per Gender, Time and Day')

fig.show()

平行类别

另一种探索类别变量之间关系的方法是以下这种流程图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。

代码如下:

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_categories(
    df,
    dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],
    color="Genre_id",
    color_continuous_scale=px.colors.sequential.Emrld,
)
fig.show()

平行坐标图

平行坐标图是上面的图表的连续版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。

代码如下:

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_coordinates(
    df,
    dimensions=[
        'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',
        'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'
    ],
    color='IMDB_Rating',
    color_continuous_scale=px.colors.sequential.Emrld)
fig.show()

量表图和指示器

量表图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。

指示器在业务和咨询中非常有用。它们可以通过文字记号来补充视觉效果,吸引观众的注意力并展现你的增长指标。

import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
    domain = {'x': [0, 1], 'y': [0, 1]},
    value = 4.3,
    mode = "gauge+number+delta",
    title = {'text': "Success Metric"},
    delta = {'reference': 3.9},
    gauge = {'bar': {'color': "lightgreen"},
        'axis': {'range': [None, 5]},
             'steps' : [
                 {'range': [0, 2.5], 'color': "lightgray"},
                 {'range': [2.5, 4], 'color': "
复制代码
相关推荐
好喜欢吃红柚子6 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python10 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
k093312 分钟前
sourceTree回滚版本到某次提交
开发语言·前端·javascript
神奇夜光杯20 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
Themberfue22 分钟前
Java多线程详解⑤(全程干货!!!)线程安全问题 || 锁 || synchronized
java·开发语言·线程·多线程·synchronized·
plmm烟酒僧24 分钟前
Windows下QT调用MinGW编译的OpenCV
开发语言·windows·qt·opencv
千天夜31 分钟前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
测试界的酸菜鱼35 分钟前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~39 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
晨曦_子画44 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin