【机器学习 复习】第3章 K-近邻算法

一、概念

1.K-近邻算法:也叫KNN 分类 算法,其中的N是 邻近邻居NearestNeighbor的首字母。

(1)其中K是特征值,就是选择离某个预测的值(例如预测的是苹果,就找个苹果)最近的几个值,邻近的意思也很简单,就是距离上最近,距离测算主要分两种。

实际情况就是点的x,y这些值就是这个点的特征,一样的事物最后在坐标轴上位置离得很近,而你把预测值放进去,它离哪个近,可不就是哪个玩意嘛。

如果有几个类挨得特别近,就根据少数服从多数的投票法则,洒洒水啦~

(2)欧氏距离和曼哈顿距离:

2.K值大小的影响:

(1)K过小:造成过拟合,因为样本过少,所以看山是山。

(2)K过大:造成欠拟合,因为样本过多,假设判断的是人种,那么多都是人,那猿猴也有人的特征,很容易就也被归类到人里面了。

3.离差标准化(了解即可):

当x,z都是两位数的时候,加入y是五位数,那此时y对距离的影响达到了非常大,所以要对其进行标准化,有三种:

4.简单说一下代码:

二、习题

单选题:

2、关于k-近邻算法说法错误的是( D)

A k-近邻算法是机器学习

B k-近邻算法是监督学习

C k代表最近的K个样本

D k的选择对分类结果没有影响

3、关于k-近邻算法说法错误的是( B)

A k-近邻算法可以用来解决回归问题

B 随着k值的增大,决策边界会越来越复杂

C 一般使用投票法进行分类任务

D 距离计算方法不同,效果也可能有显著差别

多选题:

  1. K-近邻算法的基本要素包括(ABD )。

A、距离度量 B、K值选择 C、样本大小 D、分类决策规则

判断题:

  1. 最近邻算法中,样本的预测结果只由训练集中与其距离最近的那个样本决定。( )

PS:老师的答案是对,但是我搜的是错的。。。。

相关推荐
巷9555 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
深蓝易网34 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong842 分钟前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶1 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈2 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon2 小时前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V2 小时前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai
果冻人工智能2 小时前
每一条广告都只为你而生: 用 人工智能 颠覆广告行业的下一步
人工智能