【机器学习 复习】第3章 K-近邻算法

一、概念

1.K-近邻算法:也叫KNN 分类 算法,其中的N是 邻近邻居NearestNeighbor的首字母。

(1)其中K是特征值,就是选择离某个预测的值(例如预测的是苹果,就找个苹果)最近的几个值,邻近的意思也很简单,就是距离上最近,距离测算主要分两种。

实际情况就是点的x,y这些值就是这个点的特征,一样的事物最后在坐标轴上位置离得很近,而你把预测值放进去,它离哪个近,可不就是哪个玩意嘛。

如果有几个类挨得特别近,就根据少数服从多数的投票法则,洒洒水啦~

(2)欧氏距离和曼哈顿距离:

2.K值大小的影响:

(1)K过小:造成过拟合,因为样本过少,所以看山是山。

(2)K过大:造成欠拟合,因为样本过多,假设判断的是人种,那么多都是人,那猿猴也有人的特征,很容易就也被归类到人里面了。

3.离差标准化(了解即可):

当x,z都是两位数的时候,加入y是五位数,那此时y对距离的影响达到了非常大,所以要对其进行标准化,有三种:

4.简单说一下代码:

二、习题

单选题:

2、关于k-近邻算法说法错误的是( D)

A k-近邻算法是机器学习

B k-近邻算法是监督学习

C k代表最近的K个样本

D k的选择对分类结果没有影响

3、关于k-近邻算法说法错误的是( B)

A k-近邻算法可以用来解决回归问题

B 随着k值的增大,决策边界会越来越复杂

C 一般使用投票法进行分类任务

D 距离计算方法不同,效果也可能有显著差别

多选题:

  1. K-近邻算法的基本要素包括(ABD )。

A、距离度量 B、K值选择 C、样本大小 D、分类决策规则

判断题:

  1. 最近邻算法中,样本的预测结果只由训练集中与其距离最近的那个样本决定。( )

PS:老师的答案是对,但是我搜的是错的。。。。

相关推荐
CountingStars61913 分钟前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen21 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝26 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界34 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
洛阳泰山2 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb
程序猿阿伟3 小时前
《Java 优化秘籍:计算密集型 AI 任务加速指南》
java·开发语言·人工智能