Docker搭建yolov8并训练自己的数据集(包会)

本文通过docker的方式搭建yolov8运行环境,并成功训练了自己的数据集(化学仪器数据集)。

目录

1、安装docker

2、创建yolov8镜像

3、下载代码包

4、下载模型预训练权重

5、制作数据集

6、训练及验证数据集


1、安装docker

在一台通往的服务器上安装docker,建议参考我之前的文章:Docker基础学习-CSDN博客

2、创建yolov8镜像

首先编写Dockerfile文件(为啥不用yolov8自带的Dockerfile文件,主要是因为试过但报错太多,不好解决,所以换一种风险低的方式),内容如下所示:

复制代码
# 使用与CUDA 11.2兼容的PyTorch官方镜像作为基础镜像
# 使用nvidia-smi查看服务器CUDA 版本,然后参考PyTorch官方说明来选择合适的镜像,否则会出错!
FROM pytorch/pytorch:1.13.1-cuda11.6-cudnn8-runtime

# 所需要的包
RUN pip install scipy -i https://mirrors.aliyun.com/pypi/simple
RUN pip install numpy -i https://mirrors.aliyun.com/pypi/simple
RUN pip install matplotlib -i https://mirrors.aliyun.com/pypi/simple
RUN pip install tqdm -i https://mirrors.aliyun.com/pypi/simple
RUN pip install PyYAML -i https://mirrors.aliyun.com/pypi/simple
RUN pip install Pillow -i https://mirrors.aliyun.com/pypi/simple
RUN pip install opencv_python -i https://mirrors.aliyun.com/pypi/simple
RUN pip install tensorboard -i https://mirrors.aliyun.com/pypi/simple
RUN pip install h5py -i https://mirrors.aliyun.com/pypi/simple
RUN pip install Seaborn -i https://mirrors.aliyun.com/pypi/simple
RUN pip install ultralytics -i https://mirrors.aliyun.com/pypi/simple
RUN pip install yolo -i https://mirrors.aliyun.com/pypi/simple

然后依次运行以下脚本:

复制代码
[root@hcs my_docker]# pwd
/data/ai/my_docker

[root@hcs my_docker]# ls
Dockerfile

[root@hcs my_docker]#  docker build -t yolov8 .

出现了successful时说明镜像创建成功。

3、下载代码包

下载地址:https://github.com/ultralytics/ultralytics

4、下载模型预训练权重

我选择了yolov8n的预训练权重,地址:https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt![](https://img-blog.csdnimg.cn/direct/1d998c3671264890966f01eae1580ef4.png)

然后将下载好的yolov8n.pt放在ultralytics-main代码包文件夹下,如下所示:

5、制作数据集

拍摄化学仪器照片,并对图片进行剪裁、旋转、降噪等操作,增加样本数量。图片保存的位置很有讲究,将采集的图片数据集放在ultralytics-main文件夹的datasets下面的images文件夹,分为train和val,都要放入图片。如下所示(命名一致):

然后使用LabelImg工具进行数据标注,打开cmd或者conda虚拟环境下安装:

复制代码
C:\Users\coke> pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple 

等待下载安装成功之后,继续输入以下代码打开labelimg。

复制代码
C:\Users\coke> labelimg

上传的文件夹就是刚刚/data/ai/ultralytics-main/datasets/chemical/images/train文件夹,保存就是

/data/ai/ultralytics-main/datasets/chemical/labels/train文件夹,一一对应,验证集也是如此。其中Create RectBox就是标记识别方框,然后对每张图片标记得到相应的标签文本,如下图所示。

最后编写chemical.yaml文件,注意path路径写绝对路径,names代表分类,我的数据集分为两类,因此就是0:类别1,1:类别2,2:类别3....以此类推。

复制代码
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /data/ai/ultralytics-main/datasets/chemical # dataset root dir
train: images/train # train images (relative to 'path') 128 images
val: images/val # val images (relative to 'path') 128 images
test: # test images (optional)

names:
  0: beaker
  1: Triangular_flask

至此,数据集准备结束,如下所示:

6、训练及验证数据集

进入容器,其中端口映射可以改成你服务器空闲端口号,/data/ai/ultralytics-main换成你ultralytics-main文件夹地址,yolov8换成你容器名称。

复制代码
[root@hcs ~]# docker run --gpus all --ipc=host -p 8888:8888 -v /data/ai/ultralytics-main:/data/ai/ultralytics-main -it yolov8 /bin/bash

在ultralytics-main文件夹下,按理说运行终端命令yolo detect train data=datasets/chemical/chemical.yaml model=yolov8n.yaml pretrained=./yolov8n.pt epochs=100 batch=4 lr0=0.01 resume=True就能成功运行,但是提示yolo没有detect命令等相关错误,因此查询yolo官网,我换成以python脚本的形式来进行训练。

在ultralytics-main文件夹下新建train.py,代码如下:

复制代码
from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.yaml')  # load a pretrained model (recommended for training)
model.load('yolov8n.pt')
# Train the model
model.train(data='datasets/chemical/chemical.yaml',
            epochs=100, batch=4, lr0=0.01,resume=True, workers=0 )

然后运行:

复制代码
root@8cb5eda9707f:/data/ai/ultralytics-main# python train.py 

出现下面的界面就表示运行成功:

最后结果会保存在runs/detect/train文件夹下。

至此,通过docker容器使用yolov8训练自己的数据集就完成啦,如果想要验证,可以再写一个验证脚本val.py,代码如下:

复制代码
from ultralytics import YOLO

# Load a model
model = YOLO('runs/detect/train/weights/best.pt')  # load a pretrained model (recommended for training)
# Train the model
model.val(data='datasets/chemical/chemical.yaml', epochs=100, batch=4, lr0=0.01, workers=0 )

然后再python val.py即可成功!结果同样在runs/detect/val文件夹下。

相关推荐
工程师老罗1 小时前
Pascal VOC数据集简介及数据格式说明
yolo
Lun3866buzha2 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
Lun3866buzha2 小时前
YOLOv8-SEG-FastNet-BiFPN实现室内物品识别与分类:背包、修正带、立方体和铅笔盒检测指南
yolo·分类·数据挖掘
Faker66363aaa3 小时前
基于YOLOv8-GhostHGNetV2的绝缘子破损状态检测与分类系统实现
yolo·分类·数据挖掘
Ryan老房4 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
工程师老罗5 小时前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
逸俊晨晖5 小时前
NVIDIA 4090的8路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·nvidia
工程师老罗7 小时前
YOLOv1数据增强
人工智能·yolo
weixin_468466857 小时前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参
智驱力人工智能16 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算