Qdrant 的基础教程

目录

Qdrant是一个开源的向量数据库,它专注于高维向量的快速相似性搜索。以下是一个基础的Qdrant教程,帮助你开始使用Qdrant进行向量数据的存储和搜索。

安装Qdrant

首先,你需要安装Qdrant服务。Qdrant提供了Docker镜像,使得安装和运行非常简单。

bash 复制代码
# 使用Docker拉取Qdrant镜像并运行
docker pull qdrant/qdrant:latest
docker run -p 6333:6333 qdrant/qdrant:latest

安装Qdrant客户端

Qdrant提供了Python客户端,你可以通过pip安装它。

bash 复制代码
pip install qdrant-client

初始化Qdrant客户端

在Python中,你可以初始化Qdrant客户端并连接到Qdrant服务。

python 复制代码
from qdrant_client import QdrantClient
# 初始化客户端
client = QdrantClient(host='localhost', port=6333)

创建集合(Collection)

在Qdrant中,你需要创建一个集合来存储向量数据。

python 复制代码
# 创建集合的schema
collection_schema = {
    "name": "my_collection",
    "vector_size": 128,
    "distance": "Cosine"
}
# 创建集合
client.create_collection(collection_schema)

插入向量数据

接下来,你可以向集合中插入向量数据。

python 复制代码
# 准备向量数据
vectors = [[random.random() for _ in range(128)] for _ in range(1000)]
ids = list(range(1000))
# 插入向量
client.upsert_points(collection_name="my_collection", points={"ids": ids, "vectors": vectors})

创建索引

为了加速搜索,你需要为集合创建索引。

python 复制代码
# 创建索引
client.create_index(collection_name="my_collection", index_params={"metric": "Cosine", "hnsw_config": {"m": 16, "ef_construction": 200}})

搜索向量

现在你可以使用Qdrant进行向量搜索了。

python 复制代码
# 准备查询向量
query_vector = [random.random() for _ in range(128)]
query_result = client.search(collection_name="my_collection", query_vector=query_vector, limit=10)
# 打印搜索结果
for hit in query_result:
    print(f"ID: {hit.id}, Score: {hit.score}")

清理资源

如果你不再需要集合,可以删除它。

python 复制代码
client.delete_collection(collection_name="my_collection")

以上是Qdrant的基础使用流程。你可以根据具体的应用需求调整集合的配置、索引参数和搜索逻辑。Qdrant的官方文档提供了更详细的指南和高级功能,你可以查阅官方文档以获取更多信息。

相关推荐
GIS之路38 分钟前
GeoTools 基础概念解析
数据库·设计模式·oracle
SaleCoder40 分钟前
用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
开发语言·python·机器学习·python股票预测·lstm股票模型·机器学习股票趋势
NetX行者4 小时前
.NET 9 GUID v7 vs v4:时间有序性如何颠覆数据库索引性能
数据库·mysql·abp vnext
sunon_4 小时前
实现druid数据源密码加密
数据库
sevevty-seven5 小时前
Redis中的红锁
数据库·redis·php
技术猿188702783517 小时前
实现“micro 关键字搜索全覆盖商品”并通过 API 接口提供实时数据(一个方法)
开发语言·网络·python·深度学习·测试工具
烛阴7 小时前
为什么你的Python项目总是混乱?层级包构建全解析
前端·python
三金C_C7 小时前
asyncio 与 uvloop
python·异步·asyncio
放飞自我的Coder7 小时前
【colab 使用uv创建一个新的python版本运行】
开发语言·python·uv
GoodStudyAndDayDayUp7 小时前
dbever 导出数据库表的建表语句和数据插入语句
数据库