Qdrant 的基础教程

目录

Qdrant是一个开源的向量数据库,它专注于高维向量的快速相似性搜索。以下是一个基础的Qdrant教程,帮助你开始使用Qdrant进行向量数据的存储和搜索。

安装Qdrant

首先,你需要安装Qdrant服务。Qdrant提供了Docker镜像,使得安装和运行非常简单。

bash 复制代码
# 使用Docker拉取Qdrant镜像并运行
docker pull qdrant/qdrant:latest
docker run -p 6333:6333 qdrant/qdrant:latest

安装Qdrant客户端

Qdrant提供了Python客户端,你可以通过pip安装它。

bash 复制代码
pip install qdrant-client

初始化Qdrant客户端

在Python中,你可以初始化Qdrant客户端并连接到Qdrant服务。

python 复制代码
from qdrant_client import QdrantClient
# 初始化客户端
client = QdrantClient(host='localhost', port=6333)

创建集合(Collection)

在Qdrant中,你需要创建一个集合来存储向量数据。

python 复制代码
# 创建集合的schema
collection_schema = {
    "name": "my_collection",
    "vector_size": 128,
    "distance": "Cosine"
}
# 创建集合
client.create_collection(collection_schema)

插入向量数据

接下来,你可以向集合中插入向量数据。

python 复制代码
# 准备向量数据
vectors = [[random.random() for _ in range(128)] for _ in range(1000)]
ids = list(range(1000))
# 插入向量
client.upsert_points(collection_name="my_collection", points={"ids": ids, "vectors": vectors})

创建索引

为了加速搜索,你需要为集合创建索引。

python 复制代码
# 创建索引
client.create_index(collection_name="my_collection", index_params={"metric": "Cosine", "hnsw_config": {"m": 16, "ef_construction": 200}})

搜索向量

现在你可以使用Qdrant进行向量搜索了。

python 复制代码
# 准备查询向量
query_vector = [random.random() for _ in range(128)]
query_result = client.search(collection_name="my_collection", query_vector=query_vector, limit=10)
# 打印搜索结果
for hit in query_result:
    print(f"ID: {hit.id}, Score: {hit.score}")

清理资源

如果你不再需要集合,可以删除它。

python 复制代码
client.delete_collection(collection_name="my_collection")

以上是Qdrant的基础使用流程。你可以根据具体的应用需求调整集合的配置、索引参数和搜索逻辑。Qdrant的官方文档提供了更详细的指南和高级功能,你可以查阅官方文档以获取更多信息。

相关推荐
maozexijr几秒前
什么是 Flink Pattern
大数据·python·flink
GoWjw8 分钟前
Linux虚拟文件系统(1)
运维·服务器·数据库
朱友斌16 分钟前
【Golang笔记01】Golang基础语法规则
笔记·学习·golang·go语言·golang笔记
拓端研究室TRL21 分钟前
Python+AI提示词糖尿病预测融合模型:伯努利朴素贝叶斯、逻辑回归、决策树、随机森林、支持向量机SVM应用
人工智能·python·决策树·随机森林·逻辑回归
winfredzhang26 分钟前
使用Python和Selenium打造一个全网页截图工具
开发语言·python·selenium
栀栀栀栀栀栀33 分钟前
2025/5/18
笔记
mahuifa34 分钟前
(10)python开发经验
开发语言·python
元亓亓亓1 小时前
MySQL--day2--基本的select语句
数据库·mysql
Johny_Zhao1 小时前
AI+自动化测试系统方案:网络设备与网络应用智能测试
linux·网络·人工智能·python·网络安全·docker·ai·信息安全·云计算·ansible·shell·cisco·huawei·系统运维·itsm·华三·deepseek
辛普森Mmmm1 小时前
Mysql数据库详解
数据库·mysql