Qdrant 的基础教程

目录

Qdrant是一个开源的向量数据库,它专注于高维向量的快速相似性搜索。以下是一个基础的Qdrant教程,帮助你开始使用Qdrant进行向量数据的存储和搜索。

安装Qdrant

首先,你需要安装Qdrant服务。Qdrant提供了Docker镜像,使得安装和运行非常简单。

bash 复制代码
# 使用Docker拉取Qdrant镜像并运行
docker pull qdrant/qdrant:latest
docker run -p 6333:6333 qdrant/qdrant:latest

安装Qdrant客户端

Qdrant提供了Python客户端,你可以通过pip安装它。

bash 复制代码
pip install qdrant-client

初始化Qdrant客户端

在Python中,你可以初始化Qdrant客户端并连接到Qdrant服务。

python 复制代码
from qdrant_client import QdrantClient
# 初始化客户端
client = QdrantClient(host='localhost', port=6333)

创建集合(Collection)

在Qdrant中,你需要创建一个集合来存储向量数据。

python 复制代码
# 创建集合的schema
collection_schema = {
    "name": "my_collection",
    "vector_size": 128,
    "distance": "Cosine"
}
# 创建集合
client.create_collection(collection_schema)

插入向量数据

接下来,你可以向集合中插入向量数据。

python 复制代码
# 准备向量数据
vectors = [[random.random() for _ in range(128)] for _ in range(1000)]
ids = list(range(1000))
# 插入向量
client.upsert_points(collection_name="my_collection", points={"ids": ids, "vectors": vectors})

创建索引

为了加速搜索,你需要为集合创建索引。

python 复制代码
# 创建索引
client.create_index(collection_name="my_collection", index_params={"metric": "Cosine", "hnsw_config": {"m": 16, "ef_construction": 200}})

搜索向量

现在你可以使用Qdrant进行向量搜索了。

python 复制代码
# 准备查询向量
query_vector = [random.random() for _ in range(128)]
query_result = client.search(collection_name="my_collection", query_vector=query_vector, limit=10)
# 打印搜索结果
for hit in query_result:
    print(f"ID: {hit.id}, Score: {hit.score}")

清理资源

如果你不再需要集合,可以删除它。

python 复制代码
client.delete_collection(collection_name="my_collection")

以上是Qdrant的基础使用流程。你可以根据具体的应用需求调整集合的配置、索引参数和搜索逻辑。Qdrant的官方文档提供了更详细的指南和高级功能,你可以查阅官方文档以获取更多信息。

相关推荐
一个天蝎座 白勺 程序猿13 分钟前
Apache IoTDB(5):深度解析时序数据库 IoTDB 在 AINode 模式单机和集群的部署与实践
数据库·apache·时序数据库·iotdb·ainode
大模型真好玩31 分钟前
深入浅出LangGraph AI Agent智能体开发教程(五)—LangGraph 数据分析助手智能体项目实战
人工智能·python·mcp
测试老哥36 分钟前
Selenium 使用指南
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
QQ35967734538 分钟前
ArcGIS Pro实现基于 Excel 表格批量创建标准地理数据库(GDB)——高效数据库建库解决方案
数据库·arcgis·excel
学编程的小程1 小时前
突破局域网限制:MongoDB远程管理新体验
数据库·mongodb
百锦再1 小时前
[特殊字符] Python在CentOS系统执行深度指南
开发语言·python·plotly·django·centos·virtualenv·pygame
波波烤鸭1 小时前
Redis 高可用实战源码解析(Sentinel + Cluster 整合应用)
数据库·redis·sentinel
张子夜 iiii1 小时前
4步OpenCV-----扫秒身份证号
人工智能·python·opencv·计算机视觉
潮汐退涨月冷风霜2 小时前
数字图像处理(1)OpenCV C++ & Opencv Python显示图像和视频
c++·python·opencv
l1t5 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb