[自动驾驶 SoC]-4 特斯拉FSD

FSD, 参考资料来源FSD Chip - Tesla - WikiChip

另外可参考笔者之前分享文章:[自动驾驶技术]-6 Tesla自动驾驶方案之硬件(AI Day 2021),​​​​​​​[自动驾驶技术]-8 Tesla自动驾驶方案之硬件(AI Day 2022)

1 整体介绍

特斯拉FSD计算机架构:

  • 双冗余SoC,冗余电源:每个SoC拥有独立的电源和操作系统,确保高可靠性。

  • 传感器输入:包括IMU、雷达、GPS、超声波传感器、轮速计、转向角和地图数据。

  • 8个外部摄像头和12个超声波传感器:同时将数据输入两个FSD芯片。

  • 独立处理:两个芯片独立生成车辆未来行动计划,并交由安全系统进行比较和验证。

2 FSD芯片规格

特斯拉D1芯片由1个GPU,2个NPU,3簇12个ARM Cortex-A72 CPU核,安全核,视频编码器等模块组成。

  • 制程工艺:14nm FinFET CMOS,12层金属

  • 面积:260 mm²

  • 晶体管数量:60亿

  • 包装:37.5 x 37.5 mm FCBGA

  • 处理器:12个Cortex-A72核心,2.2GHz

  • 神经网络性能:36.86*2 TOPS

  • 功耗:每芯片低于40W

3 芯片核心组件

  • GPU:用于图像处理

  • CPU:12核ARM Cortex-A72

  • ISP(图像信号处理器)

  • H.265视频编码器

  • 内存控制器、PHYs、片上互连和外围设备

3.1) 神经网络加速器(NNA)

  • 两个独立实例双神经处理单元(NPU):每个NPU拥有32MB的SRAM,用于存储临时网络结果,减少数据移动。

  • 设计频率:使用8位乘法和32位加法,2GHz+。

  • 多路累加器阵列:每个NPU有96x96的乘加阵列,总共9,216个MACs和18,432个操作。

  • 硬件SIMD、ReLU和Pooling单元(参见3.2和3.3)。

  • 每个实例32MB SRAM,优化带宽;操作流程在每个周期中,数据从SRAM读入MAC阵列进行计算,结果数据写回SRAM。

  • 激活函数支持包括ReLU、Sigmoid Linear Unit (SiLU)、TanH。

3.2) SIMD数据路径

  • 可编程SIMD单元,支持丰富的指令集

  • 浮点与整数运算

  • 支持所有指令的谓词化

  • 量化硬件的流水线实现,融合ReLu、缩放和归一化层

3.3) 池化硬件

  • 支持平均和最大池化

  • 为最常见的小池化尺寸优化

  • 重新排列输出像素以实现更快的池化

3.4)指令集和微架构:

  • 简化硬件设计:一些硬件被简化,增加了软件复杂性,但降低了硅片成本。

  • 软件优化:特斯拉的神经网络编译器负责层融合、内存访问平滑、通道填充和DMA操作。

  • 运行模式:神经网络程序在芯片启动时加载并驻留内存,NPU在异步运行整个神经网络模型后中断CPU进行后处理。

4 特斯拉自研优势

  • 优化性能:通过自研SoC,特斯拉可以针对特定的自动驾驶任务进行深度优化,提高处理效率和系统响应速度。
  • 降低成本:自研芯片可以减少对第三方供应商的依赖,从而降低长远的成本。
  • 增强控制:特斯拉可以完全掌控芯片的设计和生产过程,确保产品的质量和安全性,同时能够快速进行更新和改进。
  • 知识产权:自研芯片可以保护特斯拉的技术和算法不被竞争对手轻易复制。

5 特斯拉NNA设计哲学

专注加速MAC操作:由于99.7%的操作是乘加(MAC),加速MAC能显著提升性能。

硬件专用量化和池化单元:提高整体速度和效率。

灵活的SIMD单元:支持丰富的指令集,包括整数和浮点运算。

灵活的状态机控制逻辑:减少控制功耗,支持复杂操作。

数据共享和最小化数据移动:减少SRAM和DRAM活动,进一步降低功耗。

单时钟域设计:支持DVFS(动态电压频率调整)以优化功耗和时钟分布。

相关推荐
张拭心24 分钟前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩1 小时前
大模型 MoE,你明白了么?
人工智能·llm
Blossom.1182 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t198751282 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技2 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe3 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen3 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿3 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫3 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能
汽车仪器仪表相关领域4 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试