[18] Opencv_CUDA应用之 基于颜色的对象检测与跟踪

Opencv_CUDA应用之 基于颜色的对象检测与跟踪

  • 使用颜色作为特征来检测特定颜色的对象
  • 当要检测的对象具有特定颜色且该颜色与背景颜色不同时此方法很有用
  • 本方法不适用于对象与背景颜色相近的情况

蓝色对象检测与跟踪

  • 首先肯定会想到如何将蓝色分割出来?该使用哪个色彩空间?
  • RGB颜色空间不会将颜色信息与强度信息分开,能将颜色信息与强度信息分开的颜色空间包括HSV和YCrCb(其中Y'是亮度分量,CB和CR是蓝色差异和红色差异色度分量,非常适合这种类型的色彩信息任务)
  • 每种颜色在色调通道中都有一个特定的范围,可用于检测该颜色
  • 用于启动网络摄像机,捕获帧以及上传GPU操作的设备显存的例程如下:
cpp 复制代码
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>
#include<opencv2/cudaarithm.hpp>

using namespace cv;
using namespace std;

int main(int argc, char** argv)
{
    VideoCapture cap(0); //capture the video from web cam
    // if webcam is not available then exit the program
    if (!cap.isOpened())
    {
        cout << "Cannot open the web cam" << endl;
        return -1;
    }
    while (true)
    {
        Mat frame;
        // read a new frame from webcam
        bool flag = cap.read(frame);
        if (!flag)
        {
            cout << "Cannot read a frame from webcam" << endl;
            break;
        }

        cuda::GpuMat d_frame, d_frame_hsv, d_intermediate, d_result;
        cuda::GpuMat d_frame_shsv[3];
        cuda::GpuMat d_thresc[3];
        Mat h_result;
        d_frame.upload(frame);
        //Transform image to HSV
        cuda::cvtColor(d_frame, d_frame_hsv, COLOR_BGR2HSV);

        //Split HSV 3 channels 通道分离
        cuda::split(d_frame_hsv, d_frame_shsv);

        //Threshold HSV channels
        cuda::threshold(d_frame_shsv[0], d_thresc[0], 110, 130, THRESH_BINARY);
        cuda::threshold(d_frame_shsv[1], d_thresc[1], 50, 255, THRESH_BINARY);
        cuda::threshold(d_frame_shsv[2], d_thresc[2], 50, 255, THRESH_BINARY);

        //Bitwise AND the channels
        cv::cuda::bitwise_and(d_thresc[0], d_thresc[1], d_intermediate);
        cv::cuda::bitwise_and(d_intermediate, d_thresc[2], d_result);

        d_result.download(h_result);
        imshow("Thresholded Image", h_result);
        imshow("Original", frame);

        if (waitKey(1) == 'q')
        {
            break;
        }
    }
    return 0;
}
  • 如果想要检测蓝色,我们需要在HSV空间找到蓝色范围,三个通道的蓝色范围、色调、饱和度值如下所示:
cpp 复制代码
lower_range = [110,50,50]
upper_range = [130,255,255]
  • 此范围将用于过滤特定通道中的图像,以创建蓝色的掩码。如果此掩码再次与原始帧进行AND运算,则结果图像中只剩蓝色对象,代码如下:
cpp 复制代码
//Transform image to HSV
        cuda::cvtColor(d_frame, d_frame_hsv, COLOR_BGR2HSV);

        //Split HSV 3 channels 通道分离
        cuda::split(d_frame_hsv, d_frame_shsv);

        //Threshold HSV channels
        cuda::threshold(d_frame_shsv[0], d_thresc[0], 110, 130, THRESH_BINARY);
        cuda::threshold(d_frame_shsv[1], d_thresc[1], 50, 255, THRESH_BINARY);
        cuda::threshold(d_frame_shsv[2], d_thresc[2], 50, 255, THRESH_BINARY);

        //Bitwise AND the channels
        cv::cuda::bitwise_and(d_thresc[0], d_thresc[1], d_intermediate);
        cv::cuda::bitwise_and(d_intermediate, d_thresc[2], d_result);
  • 视频流中的帧将转换为HSV空间,蓝色在三个通道中具有不同的范围,因此每个通道必须单独设置阈值
  • 使用 split 方法分割通道,并使用 threshold 函数进行阈值处理
  • 每个通道的最小和最大范围用作下限和上限,此范围内的通道值将转换为白色,其他值将转换为黑色
  • 这三个阈值通道在逻辑上进行AND运算,以获得蓝色的最终掩码,以此掩码可用于检测和跟踪视频中具有蓝色的目标对象
相关推荐
努力学习的小廉16 分钟前
我爱学算法之—— 位运算(上)
c++·算法
剪一朵云爱着31 分钟前
一文入门:机器学习
人工智能·机器学习
hi0_631 分钟前
机器学习实战(一): 什么是机器学习
人工智能·机器学习·机器人·机器学习实战
ChinaRainbowSea33 分钟前
9. LangChain4j + 整合 Spring Boot
java·人工智能·spring boot·后端·spring·langchain·ai编程
ゞ 正在缓冲99%…35 分钟前
leetcode35.搜索插入位置
java·算法·leetcode·二分查找
有Li44 分钟前
基于联邦学习与神经架构搜索的可泛化重建:用于加速磁共振成像|文献速递-最新医学人工智能文献
论文阅读·人工智能·文献·医学生
lifallen1 小时前
字节跳动Redis变种Abase:无主多写架构如何解决高可用难题
数据结构·redis·分布式·算法·缓存
桃花键神1 小时前
从传统到智能:3D 建模流程的演进与 AI 趋势 —— 以 Blender 为例
人工智能·3d·blender
星期天要睡觉1 小时前
计算机视觉(opencv)实战十七——图像直方图均衡化
人工智能·opencv·计算机视觉
大视码垛机1 小时前
速度与安全双突破:大视码垛机重构工业自动化新范式
大数据·数据库·人工智能·机器人·自动化·制造