视频与音频的交响:探索达摩院VideoLLaMA 2的技术创新

一、简介

文章:https://arxiv.org/abs/2406.07476

代码:https://github.com/DAMO-NLP-SG/VideoLLaMA2

VideoLLaMA 2是由阿里巴巴集团的DAMO Academy团队开发的视频大型语言模型(Video-LLM),旨在通过增强空间-时间建模和音频理解能力,提升视频和音频导向任务的性能。该模型在前代基础上,引入了定制的时空卷积(STC)连接器,有效捕捉视频数据的复杂空间和时间动态。此外,通过联合训练集成了音频分支,增强了模型的多模态理解能力。在多项选择视频问答(MC-VQA)、开放式视频问答(OE-VQA)和视频字幕生成(VC)任务的综合评估中,VideoLLaMA 2展示了与开源模型相比具有竞争力的结果,并在某些专有模型上表现相近。

二、创新点

  1. 多模态理解能力提升 :VideoLLaMA 2在多模态综合理解方面表现出色,这得益于其对视频和音频数据的联合处理和理解。
  2. 时空卷积(STC)连接器 :VideoLLaMA 2的一个关键创新是STC连接器,它用于有效捕捉视频数据的空间和时间动态。

三、实验结果

a.)定性结果

b.)定量结果

实验部分对VideoLLaMA 2在多个视频和音频理解任务上的性能进行了全面评估,包括:

  • 多项选择视频问答 (MC-VQA) :在EgoSchema、PerceptionTest、MV-Bench和VideoMME等数据集上,VideoLLaMA 2展示了与开源模型相比的显著性能提升,并在某些情况下接近专有模型的结果。另外在视频字幕生成,MSVC数据集上,VideoLLaMA 2在正确性和详细性方面得分,展示了模型在解释动态视频内容方面的强大能力。

  • 开放式视频问答 (OE-VQA) :在MSVD-QA、ActivityNet-QA和Video-ChatGPT等数据集上,VideoLLaMA 2在生成答案的质量上与其他模型进行了比较,使用GPT-3.5辅助评估来确定答案的正确性。

c.)Ablation Study

文中提供的消融研究(Ablation Study)细节如下:

  • STC连接器设计选择 :通过实证研究STC连接器中空间交互(RegStage)和时空聚合(Downsample)的不同设计选择,发现3D卷积与RegStage块结合(即STC连接器)在平均性能方面表现最佳。
相关推荐
那个村的李富贵3 分钟前
CANN赋能AIGC“数字人”革命:实时视频换脸与表情驱动实战
aigc·音视频
种时光的人4 分钟前
CANN仓库核心解读:cann-utils打造AIGC大模型开发的高效工具集
aigc
禁默4 分钟前
Ops-Transformer:CANN生态赋能AIGC的Transformer专用加速库
深度学习·aigc·transformer·cann
永远都不秃头的程序员(互关)7 分钟前
CANN DVPP赋能AIGC:硬件加速视觉处理,打造极致生成式视觉工作流
人工智能·aigc
晚霞的不甘8 分钟前
CANN 支持强化学习:从 Isaac Gym 仿真到机械臂真机控制
人工智能·神经网络·架构·开源·音视频
哈哈你是真的厉害31 分钟前
AIGC 的“数学心脏”:一文读懂 CANN ops-math 通用数学库
aigc·cann
哈哈你是真的厉害36 分钟前
解构 AIGC 的“核动力”引擎:华为 CANN 如何撑起万亿参数的大模型时代
人工智能·aigc·cann
心疼你的一切37 分钟前
语音革命:CANN驱动实时语音合成的技术突破
数据仓库·开源·aigc·cann
那个村的李富贵39 分钟前
昇腾CANN实战:100行代码搭建国产化AIGC短文本生成器
aigc·cann
心疼你的一切44 分钟前
解构CANN仓库:AIGC API从底层逻辑到实战落地,解锁国产化AI生成算力
数据仓库·人工智能·深度学习·aigc·cann