视频与音频的交响:探索达摩院VideoLLaMA 2的技术创新

一、简介

文章:https://arxiv.org/abs/2406.07476

代码:https://github.com/DAMO-NLP-SG/VideoLLaMA2

VideoLLaMA 2是由阿里巴巴集团的DAMO Academy团队开发的视频大型语言模型(Video-LLM),旨在通过增强空间-时间建模和音频理解能力,提升视频和音频导向任务的性能。该模型在前代基础上,引入了定制的时空卷积(STC)连接器,有效捕捉视频数据的复杂空间和时间动态。此外,通过联合训练集成了音频分支,增强了模型的多模态理解能力。在多项选择视频问答(MC-VQA)、开放式视频问答(OE-VQA)和视频字幕生成(VC)任务的综合评估中,VideoLLaMA 2展示了与开源模型相比具有竞争力的结果,并在某些专有模型上表现相近。

二、创新点

  1. 多模态理解能力提升 :VideoLLaMA 2在多模态综合理解方面表现出色,这得益于其对视频和音频数据的联合处理和理解。
  2. 时空卷积(STC)连接器 :VideoLLaMA 2的一个关键创新是STC连接器,它用于有效捕捉视频数据的空间和时间动态。

三、实验结果

a.)定性结果

b.)定量结果

实验部分对VideoLLaMA 2在多个视频和音频理解任务上的性能进行了全面评估,包括:

  • 多项选择视频问答 (MC-VQA) :在EgoSchema、PerceptionTest、MV-Bench和VideoMME等数据集上,VideoLLaMA 2展示了与开源模型相比的显著性能提升,并在某些情况下接近专有模型的结果。另外在视频字幕生成,MSVC数据集上,VideoLLaMA 2在正确性和详细性方面得分,展示了模型在解释动态视频内容方面的强大能力。

  • 开放式视频问答 (OE-VQA) :在MSVD-QA、ActivityNet-QA和Video-ChatGPT等数据集上,VideoLLaMA 2在生成答案的质量上与其他模型进行了比较,使用GPT-3.5辅助评估来确定答案的正确性。

c.)Ablation Study

文中提供的消融研究(Ablation Study)细节如下:

  • STC连接器设计选择 :通过实证研究STC连接器中空间交互(RegStage)和时空聚合(Downsample)的不同设计选择,发现3D卷积与RegStage块结合(即STC连接器)在平均性能方面表现最佳。
相关推荐
lly_csdn12333 分钟前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
孟健1 小时前
重磅首发:国产AI编程助手Trae实测!免费用上Claude是什么体验?
前端·aigc·visual studio code
yangshuo12812 小时前
如何将手机的画面和音频全部传输到电脑显示和使用电脑外放输出
智能手机·音视频
芥末的无奈5 小时前
GStreamer 简明教程(九):插件开发,以一个音频特效插件为例
音视频·gstreamer
winxp-pic20 小时前
视频行为分析系统,可做安全行为检测,比如周界入侵,打架
安全·音视频
好评笔记1 天前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
AIGC大时代1 天前
方法建议ChatGPT提示词分享
人工智能·深度学习·chatgpt·aigc·ai写作
正在走向自律1 天前
AI 写作(六):核心技术与多元应用(6/10)
人工智能·aigc·ai写作
寻道码路1 天前
探秘 Docling:多格式文档解析转换大揭秘,赋能 AI 应用新生态
人工智能·aigc·ai编程
学习嵌入式的小羊~1 天前
RV1126+FFMPEG推流项目(11)编码音视频数据 + FFMPEG时间戳处理
ffmpeg·音视频