Stm32超声波测距实验

一.任务需求

1. 采用stm32F103和HC-SR04超声波模块, 使用标准库或HAL库+ 定时器中断,完成1或2路的超声波障碍物测距功能。

2. 当前智能汽车上一般配置有12路超声波雷达,这些专用超声波雷达内置了MCU,直接输出数字化的测距结果,一般硬件接口采用串口RS485,通信协议采用modbus。请思考:

  • RS485与RS232(UART)有什么不同?

  • Modbus协议是什么?

  • 如果让你设计一款 12路车载超声波雷达,采用 stm32F103+HC-SR04超声波模块,对外提供RS485和Modbus协议,你的设计方案是什么?

二.超声波测距实验过程

1.创建项目

设置sys

设置rcc

定时器tim2设置

定时器tim3设置

gpio管脚设置:

之后导入RTthread,导入过程参考:https://blog.csdn.net/lxr0106/article/details/134635908

2.编写代码

SC04.h:

c 复制代码
#ifndef __SR04_H
#define __SR04_H
#include "main.h"
#include "tim.h"
#include "stdio.h"
#include "rtthread.h"
#define TRIG_H  HAL_GPIO_WritePin(Trig_GPIO_Port,Trig_Pin,GPIO_PIN_SET)
#define TRIG_L  HAL_GPIO_WritePin(Trig_GPIO_Port,Trig_Pin,GPIO_PIN_RESET)
extern float distant;
void delay_us(uint32_t us);
void SR04_GetData(void);
void rt_hw_us_delay(rt_uint32_t us);
#endif

SC04.c:

c 复制代码
#include "SR04.h"

float distant;      //测量距离
uint32_t measure_Buf[3] = {0};   //存放定时器计数值的数组
uint8_t  measure_Cnt = 0;    //状态标志位
uint32_t high_time;   //超声波模块返回的高电平时间


//===============================================读取距离
void SR04_GetData(void)
{
switch (measure_Cnt){
	case 0:
         TRIG_H;
         rt_hw_us_delay(30);
         TRIG_L;
    
		measure_Cnt++;
		__HAL_TIM_SET_CAPTUREPOLARITY(&htim2, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_RISING);
		HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);	//启动输入捕获       或者: __HAL_TIM_ENABLE(&htim5);                                                                                    		
        break;
	case 3:
		high_time = measure_Buf[1]- measure_Buf[0];    //高电平时间
         printf("\r\n----高电平时间-%d-us----\r\n",high_time);							
		distant=(high_time*0.034)/2;  //单位cm
        printf("\r\n-检测距离为-%.2f-cm-\r\n",distant);          
		measure_Cnt = 0;  //清空标志位
        TIM2->CNT=0;     //清空计时器计数
		break;
				
	}
}


//===============================================us延时函数
    void delay_us(uint32_t us)//主频72M
{
    uint32_t delay = (HAL_RCC_GetHCLKFreq() / 4000000 * us);
    while (delay--)
	{
		;
	}
}
void rt_hw_us_delay(rt_uint32_t us)
{
    rt_uint32_t ticks;
    rt_uint32_t told, tnow, tcnt = 0;
    rt_uint32_t reload = SysTick->LOAD;

    /* 获得延时经过的 tick 数 */
    ticks = us * reload / (1000000 / RT_TICK_PER_SECOND);
    /* 获得当前时间 */
    told = SysTick->VAL;
    while (1)
    {
        /* 循环获得当前时间,直到达到指定的时间后退出循环 */
        tnow = SysTick->VAL;
        if (tnow != told)
        {
            if (tnow < told)
            {
                tcnt += told - tnow;
            }
            else
            {
                tcnt += reload - tnow + told;
            }
            told = tnow;
            if (tcnt >= ticks)
            {
                break;
            }
        }
    }
}


//===============================================中断回调函数
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)//
{
	
	if(TIM2 == htim->Instance)// 判断触发的中断的定时器为TIM2
	{
		switch(measure_Cnt){
			case 1:
				measure_Buf[0] = HAL_TIM_ReadCapturedValue(&htim2,TIM_CHANNEL_1);//获取当前的捕获值.
				__HAL_TIM_SET_CAPTUREPOLARITY(&htim2,TIM_CHANNEL_1,TIM_ICPOLARITY_FALLING);  //设置为下降沿捕获
				measure_Cnt++;                                            
				break;              
			case 2:
				measure_Buf[1] = HAL_TIM_ReadCapturedValue(&htim2,TIM_CHANNEL_1);//获取当前的捕获值.
				HAL_TIM_IC_Stop_IT(&htim2,TIM_CHANNEL_1); //停止捕获   或者: __HAL_TIM_DISABLE(&htim5);
				measure_Cnt++;  
                         
		}
	
	}
	
}

main.c:

c 复制代码
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "SR04.h"
#include <rtthread.h>

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM2_Init();
  MX_USART1_UART_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */
HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_1);
    /* 创建线程 */
    rt_thread_t beep_control_task = rt_thread_create("beep_control",/* 线程名称 */
                            beep_control, RT_NULL,
                            1024, 3, 10); //
    if(beep_control_task != RT_NULL)
    {
        /* 启动线程 */
        rt_thread_startup(beep_control_task);
        rt_kprintf("beep_control_task is already started\n");
        
    }
    else
    {
        rt_kprintf("beep_control_task thread is not started\n");
    }

    rt_thread_t led_control_task = rt_thread_create("led_control",/* 线程名称 */
                            led_control, RT_NULL,
                            1024, 3, 10); //
    if(led_control_task != RT_NULL)
    {
        /* 启动线程 */
        rt_thread_startup(led_control_task);
        rt_kprintf("led_control_task is already started\n");
        
    }
    else
    {
        rt_kprintf("led_control_task thread is not started\n");
    }
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
       printf("getting...\n");
  while (1)
  {

      SR04_GetData();
      rt_thread_mdelay(1000);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
void beep_control(void* promt){
  while (1)
  {
    int distant_int = distant;
    HAL_GPIO_WritePin(beep_GPIO_Port,beep_Pin,GPIO_PIN_RESET);
    rt_thread_mdelay(distant_int * 100);
    HAL_GPIO_WritePin(beep_GPIO_Port,beep_Pin,GPIO_PIN_SET);
    rt_thread_mdelay(distant_int * 100);
  }
}
void led_control(void *promt)
{
    while (1)
  {
    float pwm_state = (20.0-distant)/20.0;
		int distant_int = distant;
    int distant_pwm = (int)(pwm_state*500);
    __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_1,distant_pwm);
    rt_thread_mdelay(1000);
  }
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

3.实验效果


三. Modbus协议介绍

1. Modbus协议简介

Modbus 是一种应用层协议,主要用于工业自动化领域。它支持多种通信方式,包括RS232、RS485等。Modbus 协议定义了设备之间的通信方式,包括数据格式、错误检测和设备地址等。它允许设备通过Modbus协议进行读写操作,实现数据的交换。

2.RS485与RS232(UART)的不同:

  • RS485 是一种差分信号通信协议,具有更强的抗干扰能力,适合长距离通信。它支持多点通信,即一个总线上可以连接多个设备,并且能够通过地址区分不同的设备。
  • RS232(也称为UART)是一种单端信号通信协议,通常用于短距离通信,不支持多点通信。它通常用于点对点的通信方式。

3. 设计方案:

  • 硬件设计:
    • 使用 STM32F103 微控制器作为主控单元,因为它具有足够的处理能力和丰富的外设接口。
    • 每个 HC-SR04 超声波模块连接到一个GPIO引脚,用于触发和接收超声波的回波信号。
    • 使用RS485通信接口芯片,如 MAX485SP485,连接到微控制器的相应引脚,实现数据的串行通信。
  • 软件设计:
    • 在STM32F103上编写固件,实现对HC-SR04模块的控制,包括触发超声波发射和读取回波时间。
    • 实现Modbus协议栈,处理Modbus RTU(二进制模式)或Modbus TCP(网络模式)的数据包。
    • 设计设备地址和功能码,以便在Modbus网络上识别和控制各个超声波雷达。
    • 实现错误检测和处理机制,确保数据的准确性和通信的可靠性。
  • 通信协议:
    • 设计通信协议,定义如何通过RS485发送和接收数据,包括数据帧的格式、起始位、数据位、校验位和停止位。
    • 确保Modbus协议的实现能够处理不同类型的功能码,如读取保持寄存器、写入保持寄存器等。
  • 系统整合:
    • 将硬件和软件整合,进行系统级的测试,确保超声波雷达能够准确测量距离,并通过Modbus协议正确地与外部系统通信。

四.参考文件

https://blog.csdn.net/lxr0106/article/details/139260191

相关推荐
yutian06061 小时前
Keil MDK下载程序后MCU自动重启设置
单片机·嵌入式硬件·keil
析木不会编程4 小时前
【小白51单片机专用教程】protues仿真独立按键控制LED
单片机·嵌入式硬件·51单片机
枯无穷肉8 小时前
stm32制作CAN适配器4--WinUsb的使用
stm32·单片机·嵌入式硬件
不过四级不改名6778 小时前
基于HAL库的stm32的can收发实验
stm32·单片机·嵌入式硬件
嵌入式科普9 小时前
十一、从0开始卷出一个新项目之瑞萨RA6M5串口DTC接收不定长
c语言·stm32·cubeide·e2studio·ra6m5·dma接收不定长
嵌入式大圣9 小时前
单片机UDP数据透传
单片机·嵌入式硬件·udp
云山工作室9 小时前
基于单片机的视力保护及身姿矫正器设计(论文+源码)
stm32·单片机·嵌入式硬件·毕业设计·毕设
嵌入式-老费9 小时前
基于海思soc的智能产品开发(mcu读保护的设置)
单片机·嵌入式硬件
qq_3975623111 小时前
MPU6050 , 设置内部低通滤波器,对于输出数据的影响。(简单实验)
单片机
liyinuo201711 小时前
嵌入式(单片机方向)面试题总结
嵌入式硬件·设计模式·面试·设计规范