详解 ClickHouse 的分片集群

一、简介

分片功能依赖于 Distributed 表引擎,Distributed 表引擎本身不存储数据,有点类似于 MyCat 之于 MySql,成为一种中间件,通过分布式逻辑表来写入、分发、路由来操作多台节点不同分片的分布式数据

ClickHouse 进行分片集群的目的是解决数据的横向扩容,通过分片把一份完整的数据进行切分,不同的分片分布到不同的节点上,再通过 Distributed 表引擎把数据拼接起来一同使用。

二、集群规划

3 分片 2 副本共 6 个节点,s 表示分片数,r 表示副本数

hadoop1 hadoop2 hadoop3 hadoop4 hadoop5 hadoop6
s1r1 s1r2 s2r1 s2r2 s3r1 s3r2

1. 写入流程

实际生产中会设置 internal_replication=true,开启副本内部同步

2. 读取流程

  • 优先选择 error_count 值小的副本进行读取
  • 当同一分片的 error_count 值相同时选择方式有随机、顺序、优先第一顺位和主机名称近似等四种

3. 集群配置

shell 复制代码
su root
cd /etc/clickhouse-server/config.d

vim metrika.xml

#添加配置
<yandex>
    <remote_servers>
        <gmall_cluster> <!-- 自定义集群名称-->
            <shard> <!--集群的第一个分片-->
                <internal_replication>true</internal_replication>
                <!--该分片的第一个副本-->
                 <replica>
                     <host>hadoop101</host>
                     <port>9000</port>
                 </replica>
                 <!--该分片的第二个副本-->
                 <replica>
                     <host>hadoop102</host>
                     <port>9000</port>
                 </replica>
            </shard>
             <shard> <!--集群的第二个分片-->
                 <internal_replication>true</internal_replication>
                 <replica> <!--该分片的第一个副本-->
                     <host>hadoop103</host>
                     <port>9000</port>
                 </replica>
                 <replica> <!--该分片的第二个副本-->
                     <host>hadoop104</host>
                     <port>9000</port>
                 </replica>
             </shard>
             <shard> <!--集群的第三个分片-->
                 <internal_replication>true</internal_replication>
                 <replica> <!--该分片的第一个副本-->
                     <host>hadoop105</host>
                     <port>9000</port>
                 </replica>
                 <replica> <!--该分片的第二个副本-->
                     <host>hadoop106</host>
                     <port>9000</port>
                 </replica>
             </shard>
        </gmall_cluster>
    </remote_servers>
</yandex>

#也可以直接在 config.xml 的<remote_servers>中指定

三、三节点版本集群配置操作

生产上 ClickHouse 建议独立部署在服务器上,建议资源:100G内存,CPU为32线程

1. 分片及副本规划

hadoop102 hadoop103 hadoop104
s1r1 s1r2 s2r1

2. 实操步骤

  • 在 hadoop102 节点的 /etc/clickhouse-server/config.d 目录下创建 metrika-shard.xml 文件

    shell 复制代码
    su root
    cd /etc/clickhouse-server/config.d 
    vim metrika-shard.xml
    
    #添加配置
    <?xml version="1.0"?>
    <yandex>
        <remote_servers>
            <gmall_cluster> <!-- 自定义集群名称-->
                <shard> <!--集群的第一个分片-->
                    <internal_replication>true</internal_replication>
                    <replica> <!--该分片的第一个副本-->
                        <host>hadoop102</host>
                        <port>9000</port>
                    </replica>
                    <replica> <!--该分片的第二个副本-->
                        <host>hadoop103</host>
                        <port>9000</port>
                    </replica>
                </shard>
                <shard> <!--集群的第二个分片-->
                    <internal_replication>true</internal_replication>
                    <replica> <!--该分片的第一个副本-->
                        <host>hadoop104</host>
                        <port>9000</port>
                    </replica>
                </shard>
            </gmall_cluster>
        </remote_servers>
        <zookeeper-servers>
            <node index="1">
            <host>hadoop102</host>
            <port>2181</port>
            </node>
            <node index="2">
            <host>hadoop103</host>
            <port>2181</port>
            </node>
            <node index="3">
            <host>hadoop104</host>
            <port>2181</port>
            </node>
        </zookeeper-servers>
        <macros>
            <shard>01</shard> <!--不同机器放的分片数不一样-->
            <replica>rep_1_1</replica> <!--不同机器放的副本数不一样-->
        </macros>
    </yandex>
    
    chown clickhouse:clickhouse metrika-shard.xml
    
    #也可以直接在 config.xml 的<remote_servers>中指定
  • 在 hadoop102 上修改 /etc/clickhouse-server/config.xml

    shell 复制代码
    cd /etc/clickhouse-server
    
    vim config.xml
    
    #添加外部文件路径
    <zookeeper incl="zookeeper-servers" optional="true" />
    <include_from>/etc/clickhouse-server/config.d/metrika-shard.xml</include_from>
  • 分发配置到 hadoop103 和 hadoop104

    shell 复制代码
    /etc/clickhouse-server/config.d/metrika-shard.xml
    /etc/clickhouse-server/config.xml
  • 分别修改 hadoop103 和 hadoop104 中 metrika-shard.xml<macros> 的配置

    shell 复制代码
    #hadoop103
    sudo vim /etc/clickhouse-server/config.d/metrika-shard.xml
    
    <macros>
        <shard>01</shard> <!--不同机器放的分片数不一样-->
        <replica>rep_1_2</replica> <!--不同机器放的副本数不一样-->
    </macros>
    
    #hadoop104
    sudo vim /etc/clickhouse-server/config.d/metrika-shard.xml
    
    <macros>
        <shard>02</shard> <!--不同机器放的分片数不一样-->
        <replica>rep_2_1</replica> <!--不同机器放的副本数不一样-->
    </macros>
  • 分别在三台节点上启动 clickhouse 服务

    shell 复制代码
    sudo clickhouse start
  • 在 hadoop102 上创建一张本地表

    sql 复制代码
    create table st_order_mt on cluster gmall_cluster 
    (
        id UInt32,
        sku_id String,
        total_amount Decimal(16,2),
        create_time Datetime
    ) 
    engine=ReplicatedMergeTree('/clickhouse/tables/{shard}/st_order_mt','{replica}')
    partition by toYYYYMMDD(create_time)
    primary key (id)
    order by (id,sku_id);
    
    --on cluster 的集群名字要和配置文件中自定义的集群名一致
    --分片和副本名称从配置文件的宏定义中获取
    --hadoop103 和 hadoop104 上会自动同步创建这张表
  • 在 hadoop102 上创建 Distribute 分布式表

    sql 复制代码
    create table st_order_mt_all2 on cluster gmall_cluster
    (
        id UInt32,
        sku_id String,
        total_amount Decimal(16,2),
        create_time Datetime
    )
    engine=Distributed(gmall_cluster, default, st_order_mt, hiveHash(sku_id));
    
    --on cluster 的集群名字要和配置文件中自定义的集群名一致
    --hadoop103 和 hadoop104 上会自动同步创建这张表
    --表引擎为 Distributed,其中的参数分别为:集群名称,数据库名,本地表名,分片键
    --分片键必须是整型数字,所以用 hiveHash 函数转换,也可以 rand()
  • 向 hadoop102 上的分布式表插入数据

    sql 复制代码
    insert into st_order_mt_all2 values
    (201,'sku_001',1000.00,'2020-06-01 12:00:00') ,
    (202,'sku_002',2000.00,'2020-06-01 12:00:00'),
    (203,'sku_004',2500.00,'2020-06-01 12:00:00'),
    (204,'sku_002',2000.00,'2020-06-01 12:00:00'),
    (205,'sku_003',600.00,'2020-06-02 12:00:00');
  • 分别在 hadoop102、hadoop103 和 hadoop104 上查询本地表和分布式表的数据进行对比

    sql 复制代码
    --hadoop102
    select * from st_order_mt;
    select * from st_order_mt_all2;
    
    --hadoop103
    select * from st_order_mt;
    select * from st_order_mt_all2;
    
    --hadoop104
    select * from st_order_mt;
    select * from st_order_mt_all2;
相关推荐
程序研44 分钟前
mysql之group by语句
数据库·mysql
青云交1 小时前
Java 大视界 -- Java 大数据在元宇宙中的关键技术与应用场景(65)
大数据·数据分析·元宇宙·数据存储·实时处理·虚拟身份·虚拟经济
HaoHao_0102 小时前
AWS Outposts
大数据·服务器·数据库·aws·云服务器
HaoHao_0102 小时前
VMware 的 AWS
大数据·服务器·数据库·云计算·aws·云服务器
娶个名字趴2 小时前
Redis(5,jedis和spring)
数据库·redis·缓存
小光学长2 小时前
基于vue框架的的信用社业务管理系统设计与实现4gnx5(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
数据库
鲁班班3 小时前
MySQL通过binlog恢复数据
数据库·mysql
Elastic 中国社区官方博客4 小时前
将 OneLake 数据索引到 Elasticsearch - 第二部分
大数据·数据库·elasticsearch·搜索引擎·信息可视化·全文检索
庄小焱4 小时前
Elasticsearch——Elasticsearch查询实战
大数据·elasticsearch·搜索引擎