Machine Learning

Machine Learning:

监督学习

无监督学习

回归问题

聚类问题

单变量线性回归

代价函数

梯度下降

批量梯度下降

多变量线性回归

特征缩放、学习率

特征缩放、学习率

共轭梯度、局部优化论、有限内存局部优化论

神经网络

正向传播算法、反向传播算法

训练神经网络流程:

1、参数的随机初始化;

2、利用正向传播方法计算所有的输出;

3、编写计算代价函数J的代码;

4、利用反向传播方法计算所有偏导数;

5、利用数值检验方法检验这些偏导数;

6、利用优化算法来最小化代价函数

支持向量机SVM 大间距分类器

核函数:高斯、线性、多项式、字符串等;

非监督算法:聚类、降维算法;

K-均值;

异常检测;

随机剃度下降法、小批量剃度下降法;

集体编成智慧阅读

吴恩达--Deep learning :

1、what is Neural Network?

神经元 、ReLU激活函数;

2、神经网络的监督学习:

CNN适用于图像、RNN;

非结构化数据难以处理;

sigmoid函数;

Week2:

Basics of Neural Network programming:

1、二分类(binary classification)

前向传播、反向传播;

逻辑回归;

Mtrain、Mtest;

2、逻辑回归:

代价函数;损失函数;

3、剃度下降法:

凸函数;学习率;求导、求偏导;

4、逻辑回归中的剃度下降;

5、向量化;

6、

Week3:Shallow neural networks

1、NN:

输入层、隐藏层、输出层;

2、向量化计算:

使用for进行计算很低效,转换成向量进行操作;

3、随机初始化;

4、深层神经网络:

超参数;

Class2:

1、高方差-过拟合

解决方法:正则化/多数据;L2正则化-权重衰减;正则化参数

高偏差-欠拟合

(随机失活正则化)dopout-压缩权重,预防过拟合;

2、加速训练的方法:

归一化输入:零均值;归一化方差;

梯度消失/梯度爆炸;

梯度检验;

相关推荐
Blossom.11831 分钟前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t1987512833 分钟前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技35 分钟前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe40 分钟前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen40 分钟前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿42 分钟前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫1 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能
汽车仪器仪表相关领域2 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试
璞华Purvar2 小时前
地方产投集团数字化平台建设实战:从内控管理到决策赋能(璞华公开课第5期活动回顾)
大数据·人工智能
Byron Loong2 小时前
【半导体】KLA 公司eDR介绍
人工智能