Machine Learning

Machine Learning:

监督学习

无监督学习

回归问题

聚类问题

单变量线性回归

代价函数

梯度下降

批量梯度下降

多变量线性回归

特征缩放、学习率

特征缩放、学习率

共轭梯度、局部优化论、有限内存局部优化论

神经网络

正向传播算法、反向传播算法

训练神经网络流程:

1、参数的随机初始化;

2、利用正向传播方法计算所有的输出;

3、编写计算代价函数J的代码;

4、利用反向传播方法计算所有偏导数;

5、利用数值检验方法检验这些偏导数;

6、利用优化算法来最小化代价函数

支持向量机SVM 大间距分类器

核函数:高斯、线性、多项式、字符串等;

非监督算法:聚类、降维算法;

K-均值;

异常检测;

随机剃度下降法、小批量剃度下降法;

集体编成智慧阅读

吴恩达--Deep learning :

1、what is Neural Network?

神经元 、ReLU激活函数;

2、神经网络的监督学习:

CNN适用于图像、RNN;

非结构化数据难以处理;

sigmoid函数;

Week2:

Basics of Neural Network programming:

1、二分类(binary classification)

前向传播、反向传播;

逻辑回归;

Mtrain、Mtest;

2、逻辑回归:

代价函数;损失函数;

3、剃度下降法:

凸函数;学习率;求导、求偏导;

4、逻辑回归中的剃度下降;

5、向量化;

6、

Week3:Shallow neural networks

1、NN:

输入层、隐藏层、输出层;

2、向量化计算:

使用for进行计算很低效,转换成向量进行操作;

3、随机初始化;

4、深层神经网络:

超参数;

Class2:

1、高方差-过拟合

解决方法:正则化/多数据;L2正则化-权重衰减;正则化参数

高偏差-欠拟合

(随机失活正则化)dopout-压缩权重,预防过拟合;

2、加速训练的方法:

归一化输入:零均值;归一化方差;

梯度消失/梯度爆炸;

梯度检验;

相关推荐
Shawn_Shawn3 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like5 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a5 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者6 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗6 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信7 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235867 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs7 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习