基于matlab的图像增强

1 原理

在图像增强中,线性变换、非线性变换(包括伽马变换和对数变换)以及直方图均衡化是常用的技术。以下是这些技术的原理和标准公式:

1.1 线性变换

线性变换主要用于调整图像的对比度和亮度。它通过改变像素值的线性映射关系来实现,公式如下:

S = k × r + b

  • S:输出变量(变换后的像素值)
  • r:输入变量(原始像素值)
  • k:倍数因子(控制对比度)
  • b:偏移因子(控制亮度)
1.2 非线性变换

本文采用伽马变换与对数变换。

1.2.1 伽马变换(Gamma Transformation)

伽马变换是一种常用的非线性灰度变换方法,用于调整图像的对比度。它基于光照强度与人眼感知之间的非线性关系。

g(x, y) = c × [f(x, y)]^γ

  • g(x, y):变换后的像素值
  • f(x, y):原始像素值
  • c:常数,用于控制对比度的增益
  • γ:伽马值,用于调整亮度的曲线形状。当γ > 1时,增加了高灰度级之间的对比度;当γ < 1时,增加了低灰度级之间的对比度。
1.2.2 对数变换

对数变换通过拉伸低灰度级并压缩高灰度级来增强图像的暗部细节。

g(x, y) = c × log(1 + f(x, y))

  • g(x, y):变换后的像素值
  • f(x, y):原始像素值
  • c:常数,用于控制对比度的增益
1.3 直方图均衡化

直方图均衡化通过调整图像的灰度级分布,使得图像中的像素更加均匀地分布在整个灰度级范围内,从而增强图像的整体对比度。

  • s_k:输出灰度级
  • n:图像中像素的总和
  • n_j:当前灰度级的像素个数
  • k:灰度级索引(0到L-1,L是图像中可能的灰度级总数)

综上所述:

  1. 线性变换通过调整倍数因子和偏移因子来改变图像的对比度和亮度。
  2. 非线性变换(如伽马变换和对数变换)基于非线性函数来调整图像的灰度级,以实现特定的对比度增强效果。
  3. 直方图均衡化通过调整图像的灰度级分布来增强图像的整体对比度。

2 代码

Matlab 复制代码
 %% 线性变换进行图像增强
I2= imread('test.jpeg');
J2=rgb2gray(I2);
figure;
subplot(2,2,1), imshow(J2) ;
title('原始图像');  
subplot(2,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图');  
K = imadjust(J2,[0.4 0.6],[]);%使用imadjust函数进行灰度的线性变换
subplot(2,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(2,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');

%% 伽马变换进行图像增强
figure;
subplot(3,2,1), imshow(J2) ;
title('原始图像');  
subplot(3,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图'); 
gamma = 0.5;
I_gamma = imadjust(J2, [], [], gamma);  
subplot(3,2,3),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(3,2,4),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
%% % 对数变换进行图像增强  
c = 0.5; % 控制参数,用于避免log(0)  
I_log = c * log(1 + double(J2)) / log(256);  
I_log = im2uint8(I_log);    
subplot(3,2,5);  
imshow(I_log);  
title('对数变换后的图像');
subplot(3,2,6);  
imhist(I_log);
title('对数变换后的灰度直方图');
%% 
figure('Position',[50 50 800 600])
subplot(4,2,1), imshow(J2);
title('原始图像');  
subplot(4,2,2), imhist(J2);
title('原始灰度直方图'); 
subplot(4,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(4,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');
subplot(4,2,5),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(4,2,6),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
subplot(4,2,7),imshow(I_log);  
title('对数变换后的图像');
subplot(4,2,8),imhist(I_log);
title('对数变换后的灰度直方图');
%% 直方图均衡化进行图像增强
I3 = imread('test.jpeg'); % 读取图像  
I_gray = rgb2gray(I3); % 转换为灰度图像    
% 直方图均衡化  
I_eq = histeq(I_gray);    
% 显示原始图像和增强后的图像  
figure;
subplot(2, 2, 1),imshow(I_gray);
title('原始图像'); 
subplot(2, 2, 2);  
imhist(I_gray),title('原始灰度直方图'); 
subplot(2, 2, 3),imshow(I_eq);  
title('直方图均衡化后的图像');
subplot(2, 2, 4),imhist(I_eq);  
title('直方图均衡化后的灰度直方图');

3 运行结果

图1 线性变换与原始图像对比图

图2 非线性变换与原始图像对比图

图3 总体变换对比图

图4 直方图均衡化对比图

相关推荐
WWZZ20257 小时前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
Ai173163915798 小时前
2025.11.28国产AI计算卡参数信息汇总
服务器·图像处理·人工智能·神经网络·机器学习·视觉检测·transformer
后端小张12 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构
浩浩的代码花园12 小时前
自研端侧推理模型实测效果展示
android·深度学习·计算机视觉·端智能
这张生成的图像能检测吗15 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
翔云 OCR API21 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
AndrewHZ1 天前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
东荷新绿1 天前
MATLAB 2018a 安装教程:30分钟搞定安装
开发语言·matlab·matlab2018a
音视频牛哥1 天前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
audyxiao0011 天前
期刊研究热点扫描|一文了解计算机视觉顶刊TIP的研究热点
人工智能·计算机视觉·transformer·图像分割·多模态