【昇思初学入门】第四天打卡

数据变换Transforms

心得体会

  1. MindSpore提供了丰富的数据变换工具,针对图像数据可以使用如Rescale、Normalize和HWC2CHW等,且使用Compose类允许我们定义一个变换序列,并将它们作为一个整体应用到数据上。
python 复制代码
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)
train_dataset = train_dataset.map(composed, 'image')
  1. MindSpore 还提供了处理文本数据常用步骤,分词(Tokenize)和词表映射(Lookup)
python 复制代码
# 分词
texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')
def my_tokenizer(content):
    return content.split()
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))

3.MindSpore 还支持Lambda函数对数据进行自定义处理

python 复制代码
test_dataset.map(lambda x: x * 2)
相关推荐
夏天是冰红茶1 小时前
DINO原理详解
人工智能·深度学习·机器学习
吴佳浩3 小时前
Python入门指南(六) - 搭建你的第一个YOLO检测API
人工智能·后端·python
SHIPKING3934 小时前
【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
人工智能
yong99904 小时前
基于SIFT特征提取与匹配的MATLAB图像拼接
人工智能·计算机视觉·matlab
知秋一叶1234 小时前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
春日见5 小时前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
————A5 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR5 小时前
每周AI论文速递(251215-251219)
人工智能
weixin_409383126 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
JoannaJuanCV6 小时前
自动驾驶—CARLA仿真(22)manual_control_steeringwheel demo
人工智能·自动驾驶·pygame·carla