【昇思初学入门】第四天打卡

数据变换Transforms

心得体会

  1. MindSpore提供了丰富的数据变换工具,针对图像数据可以使用如Rescale、Normalize和HWC2CHW等,且使用Compose类允许我们定义一个变换序列,并将它们作为一个整体应用到数据上。
python 复制代码
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)
train_dataset = train_dataset.map(composed, 'image')
  1. MindSpore 还提供了处理文本数据常用步骤,分词(Tokenize)和词表映射(Lookup)
python 复制代码
# 分词
texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')
def my_tokenizer(content):
    return content.split()
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))

3.MindSpore 还支持Lambda函数对数据进行自定义处理

python 复制代码
test_dataset.map(lambda x: x * 2)
相关推荐
studytosky12 分钟前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
做萤石二次开发的哈哈16 分钟前
11月27日直播预告 | 萤石智慧台球厅创新场景化方案分享
大数据·人工智能
AGI前沿20 分钟前
AdamW的继任者?AdamHD让LLM训练提速15%,性能提升4.7%,显存再省30%
人工智能·算法·语言模型·aigc
后端小肥肠39 分钟前
小佛陀漫画怎么做?深扒中老年高互动赛道,用n8n流水线批量打造
人工智能·aigc·agent
是店小二呀40 分钟前
本地绘图工具也能远程协作?Excalidraw+cpolar解决团队跨网画图难题
人工智能
i爱校对1 小时前
爱校对团队服务全新升级
人工智能
KL132881526931 小时前
AI 介绍的东西大概率是不会错的,包括这款酷铂达 VGS耳机
人工智能
vigel19901 小时前
人工智能的7大应用领域
人工智能
哥布林学者1 小时前
吴恩达深度学习课程三: 结构化机器学习项目 第一周:机器学习策略(二)数据集设置
深度学习·ai
人工智能训练1 小时前
windows系统中的docker,xinference直接运行在容器目录和持载在宿主机目录中的区别
linux·服务器·人工智能·windows·ubuntu·docker·容器