【昇思初学入门】第四天打卡

数据变换Transforms

心得体会

  1. MindSpore提供了丰富的数据变换工具,针对图像数据可以使用如Rescale、Normalize和HWC2CHW等,且使用Compose类允许我们定义一个变换序列,并将它们作为一个整体应用到数据上。
python 复制代码
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)
train_dataset = train_dataset.map(composed, 'image')
  1. MindSpore 还提供了处理文本数据常用步骤,分词(Tokenize)和词表映射(Lookup)
python 复制代码
# 分词
texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')
def my_tokenizer(content):
    return content.split()
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))

3.MindSpore 还支持Lambda函数对数据进行自定义处理

python 复制代码
test_dataset.map(lambda x: x * 2)
相关推荐
IT研究所37 分钟前
IT 资产管理 (ITAM) 与 ITSM 协同实践:构建从资产到服务的闭环管理体系
大数据·运维·人工智能·科技·安全·低代码·自动化
沐曦股份MetaX1 小时前
基于内生复杂性的类脑脉冲大模型“瞬悉1.0”问世
人工智能·开源
power 雀儿2 小时前
张量基本运算
人工智能
陈天伟教授2 小时前
人工智能应用- 人工智能交叉:01. 破解蛋白质结构之谜
人工智能·神经网络·算法·机器学习·推荐算法
政安晨2 小时前
政安晨【人工智能项目随笔】使用OpenClaw的主节点协同子节点撰写大型技术前沿论文的实战指南
人工智能·ai agent·openclaw论文写作·openclaw论文写作经验·ai代理写论文·ai分布式协作·oepnclaw应用
大成京牌3 小时前
2026年京牌政策深度对比,三款优质车型选购推荐榜单探索
人工智能
听麟4 小时前
HarmonyOS 6.0+ 跨端会议助手APP开发实战:多设备接续与智能纪要全流程落地
分布式·深度学习·华为·区块链·wpf·harmonyos
xuxianliang4 小时前
第154章 “神谕”的低语(AI)
人工智能·程序员创富
geneculture4 小时前
人机互助新时代超级个体(OPC)的学术述评——基于人文学科与数理学科的双重视域
大数据·人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)
KG_LLM图谱增强大模型4 小时前
给具身智能装上图谱大模型大脑,7B小模型超越72B大模型!层次化知识图谱让复杂机器人规划能力暴增17%,能耗大幅降低
人工智能·机器人·知识图谱