【昇思初学入门】第四天打卡

数据变换Transforms

心得体会

  1. MindSpore提供了丰富的数据变换工具,针对图像数据可以使用如Rescale、Normalize和HWC2CHW等,且使用Compose类允许我们定义一个变换序列,并将它们作为一个整体应用到数据上。
python 复制代码
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)
train_dataset = train_dataset.map(composed, 'image')
  1. MindSpore 还提供了处理文本数据常用步骤,分词(Tokenize)和词表映射(Lookup)
python 复制代码
# 分词
texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')
def my_tokenizer(content):
    return content.split()
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))

3.MindSpore 还支持Lambda函数对数据进行自定义处理

python 复制代码
test_dataset.map(lambda x: x * 2)
相关推荐
Das121 分钟前
【机器学习】01_模型选择与评估
人工智能·算法·机器学习
墨染天姬28 分钟前
【AI】AI时代,模组厂商如何建立自己的AI护城河?
人工智能
aigcapi33 分钟前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
字节跳动开源37 分钟前
Midscene v1.0 发布 - 视觉驱动,UI 自动化体验跃迁
前端·人工智能·客户端
+wacyltd大模型备案算法备案1 小时前
大模型备案怎么做?2025年企业大模型备案全流程与材料清单详解
人工智能·大模型备案·算法备案·大模型上线登记
吾在学习路2 小时前
故事型总结:Swin Transformer 是如何打破 Vision Transformer 壁垒的?
人工智能·深度学习·transformer
sandwu2 小时前
AI自动化测试(一)
人工智能·agent·playwright·ai自动化测试·midscene
问道飞鱼2 小时前
【人工智能】AI Agent 详解:定义、分类与典型案例
人工智能·ai agent
编码小哥2 小时前
OpenCV形态学操作:腐蚀与膨胀原理解析
人工智能·opencv·计算机视觉
lbb 小魔仙2 小时前
AI + 云原生实战:K8s 部署分布式训练集群,效率翻倍
人工智能·云原生·kubernetes