Bilibili开源发布轻量级 Index 系列语言模型:2.8T 训练数据,支持角色扮演

Bilibili首次发布 Index 系列模型中的轻量版本:Index-1.9B 系列

本次开源的 Index-1.9B系列包含以下模型:

Index-1.9Bbase:基座模型,具有 19 亿 非词嵌入参数量,在 2.8T 中英文为主的语料上预训练,多个评测基准上与同级别模型比处于领先.

Index-1.9Bpure:基座模型的对照组,与 base 具有相同的参数和训练策略,不同之处在于我们严格过滤了该版本语料中所有指令相关的数据,

以此来验证指令对 benchmark 的影响

Index-1.9Bchat:基于 index-1.9B base 通过 SFT 和 DPO 对齐后的对话模型,我们发现由于预训练中引入了较多定向清洗对话类语料,聊天的趣味性明显更强

Index-1.9Bcharacter :在 SFT 和 DPO 的基础上引入了 RAG 来实现 fewshots 角色扮演定制

目前,我们已在 HuggingFace 和 ModelScope 上同步开源。期待听到你们的使用反馈!

开源网址,模型下载请到喜好儿网查看

详细描述了模型的预训练过程,包括数据清洗、去重、Tokenizer的设计和模型架构的选择。特别提到了模型使用了SentencePiece训练的BPE Tokenizer,并针对中文进行了优化。模型架构方面,Index-1.9B采用了36层的深度,并采用了Norm-Head技术来稳定训练过程。

训练过程中,使用了AdamW优化器,并采取了两阶段训练策略,包括稳定阶段和衰减阶段。报告还讨论了训练基础设施,包括自研训练框架和硬件配置。

在评测部分,模型在多个任务上的表现被详细列出,包括综合性选择题、理解和推理、数学问题解答以及代码能力评测。结果显示Index-1.9B在多数任务上都有出色的表现。

报告还包括了对模型结构、学习率和训练策略的深入讨论和实验,以及对预训练中是否加入指令的探讨。最后,报告介绍了如何通过SFT(Supervised Fine-Tuning)和DPO(Direct Preference Optimization)进一步优化模型,以更好地符合人类的偏好和提高对话的趣味性。

相关推荐
研梦非凡1 小时前
CVPR 2025|无类别词汇的视觉-语言模型少样本学习
人工智能·深度学习·学习·语言模型·自然语言处理
czijin1 小时前
【论文阅读】Security of Language Models for Code: A Systematic Literature Review
论文阅读·人工智能·安全·语言模型·软件工程
码界奇点3 小时前
豆包新模型矩阵与PromptPilot构建企业级AI开发的体系化解决方案
人工智能·线性代数·ai·语言模型·矩阵·硬件工程
z千鑫5 小时前
【模型比对】Gemini 2.5 Pro 与 Claude Sonnet 4 结构化数据对比报告 + API KEY的使用教程
人工智能·gpt·ai·语言模型·aigc
温柔哥`12 小时前
AgentThink:一种在自动驾驶视觉语言模型中用于工具增强链式思维推理的统一框架
语言模型·自动驾驶·agent·工具调用·grpo·强化微调·tool call
ai绘画-安安妮15 小时前
Agentic AI 架构全解析:到底什么是Agentic AI?它是如何工作的
人工智能·ai·语言模型·自然语言处理·程序员·大模型·转行
relis16 小时前
突破大语言模型推理瓶颈:深度解析依赖关系与优化策略
人工智能·语言模型·自然语言处理
拆房老料18 小时前
大语言模型基础-Transformer之上下文
人工智能·语言模型·transformer
relis18 小时前
解密大语言模型推理:Prompt Processing 的内存管理与计算优化
android·语言模型·prompt
小陈phd20 小时前
高级RAG策略学习(一)——自适应检索系统
人工智能·windows·语言模型