【机器学习300问】128、简述什么Word2Vec?

一、一句话说明Word2Vec是什么?

Word2Vec是一种常见的词嵌入技术。Word2Vec的目标是将每个词表示为一个向量,使得这些向量能够反映出词语之间的相似性和关联性。

word2vec算法通过预测中心词和上下文词的共现概率来学习词向量,能够捕捉词语之间的语义关系。

二、模型的架构

Word2Vec包括两种模型架构:

无论是CBOW还是Skip-gram,他们的目标都是得出词嵌入矩阵。


(1)CBOW

**连续词袋模型(Continuous Bag-of-Words, CBOW)目标是根据上下文预测当前单词。**在这个模型中,给定一个上下文,模型试图预测在这个上下文中出现的单词。这种方法对常见的单词效果更好。

  • 输入是上下文词,输出是中心词【就是完形填空】
  • 设置窗口上下文

CBOW模型考虑一个词的前后若干个词(定义为一个窗口),将这些上下文词的向量相加(或取平均)作为输入,然后通过一个神经网络模型来预测位于这些上下文中的目标词。

  • CBOW模型本质是一个简单的前馈神经网络

**输入层:**输入是中心词周围的上下文单词。在实际操作中,通常会选择中心词的前后各几个单词作为上下文。这些上下文单词被转化为词向量,通常是通过输入层中的Embedding层实现(嵌入层)。

**隐藏层:**所有上下文词向量被平均或求和来形成一个固定长度的隐藏层表示,这个过程相当于将输入向量合并为一个单一的向量。

线性层位于输出层前的位置。在处理了上下文向量之后,网络通常会有一个线性层(也称为全连接层),它使用权重矩阵(这些权重在训练过程中学习得到)将上下文表示变换到另一个空间,通常是一个与词汇表大小相同的空间,为了准备最后的分类任务 --- 即预测中心单词。

**输出层:**隐藏层的输出是一个单词的分布式表示,然后这个表示被用来预测中心单词。通常,这涉及到一个softmax函数,它会将隐藏层的输出转换成一个概率分布,对应于词汇表中每个单词是中心词的概率。


(2)Skip-gram

**跳字模型(Skip-gram)是相反的过程,目标是根据当前单词来预测其上下文中的单词。**这个模型适合捕捉更多的近上下文信息,对罕见词或特殊词汇表现更佳。

  • 输入是中心词,输出是上下文词【就是遣词造句】
  • 设置窗口上下文
  • 使用一个词预测另一个词,就是尽量使这两个词向量接近
  • Skip-gram模型本质也是个神经网络

**输入层:**接收一个中心词的词向量表示。

**隐藏层:**该层通常包含较多的神经元,用于学习从中心词到上下文词的复杂映射关系。这层的输出可以看作是中心词的潜在表示,但其直接目的是服务于输出层的预测,而非数据重构。

**输出层:**包含词汇表中所有词的softmax分类器,用于预测围绕中心词的上下文词的概率分布。

三、总结

Word2Vec词嵌入模型的**核心目标是通过学习将词汇转化为高维向量的形式(得到一个词嵌入矩阵),使得这些向量能捕捉词语间的语义和句法关系。**这些词向量能够表达词语之间的相似性和关联性,从而提升诸如文本分类、情感分析、机器翻译等自然语言处理任务的性能。

Word2Vec主要包含两个模型:Skip-gram模型、CBOW模型

相关推荐
leo__52014 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体14 小时前
云厂商的AI决战
人工智能
njsgcs15 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派15 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch15 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中15 小时前
第1章 机器学习基础
人工智能·机器学习
wyw000016 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI16 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云201016 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲16 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程