基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习

1. 环境与模块准备

导入torchtorch.nntorch.optim等 PyTorch 核心模块,以及numpytorchvision等工具库,用于模型构建、优化、数据处理;同时定义超参数(如批次大小BATCHSIZE=100、训练轮数EPOCHES=20、学习率LR=0.001等)。

2. 模型定义

构建了多类 CNN 模型,覆盖不同复杂度:

  • 基础 CNN 模型CNNNetNetLeNet,结构相近,由卷积层(Conv2d池化层(MaxPool2d 、* 全连接层(Linear)* 组成,通过 ReLU 激活引入非线性,属于轻量型 CNN。
  • VGG 模型VGG(支持 VGG16/VGG19),通过配置字典cfg定义 "卷积块 + 池化层" 的重复结构,利用_make_layers方法自动生成层序列,最终接全连接层完成分类,属于深度化 CNN。

3. 数据处理

基于torchvision加载CIFAR10 数据集,并定义数据变换:

  • 训练集:加入RandomCrop(随机裁剪)、RandomHorizontalFlip(水平翻转)增强数据多样性,再通过ToTensor(转张量)、Normalize(标准化)统一数据分布。
  • 测试集:仅保留ToTensorNormalize,避免数据增强引入额外噪声。随后通过DataLoader创建训练 / 测试数据加载器,实现批量数据迭代。

4. 模型训练与评估

采用两种策略开展训练与性能评估:

  • 集成学习(投票机制) :将CNNNetNetLeNet封装为列表,共享Adam优化器与CrossEntropyLoss损失函数。训练时,每个模型独立前向传播、计算损失并反向传播更新参数;测试时,各模型输出预测结果,通过 "多数表决" 得到集成模型的预测,最终对比集成模型与单模型的准确率。
  • 单模型(VGG16)训练 :单独训练VGG('VGG16'),流程与集成方法一致,重点跟踪 VGG16 在每轮训练后的测试准确率。

核心意图

通过对比基础 CNN 模型集成模型深度 VGG 模型 的性能,展现模型结构复杂度 (如网络深度)、集成学习策略对 CIFAR10 图像分类任务准确率的影响。

5.代码

相关推荐
FreeCode15 分钟前
LangChain 1.0智能体开发:记忆组件
人工智能·langchain·agent
Geoking.16 分钟前
PyTorch 中 model.eval() 的使用与作用详解
人工智能·pytorch·python
nn在炼金17 分钟前
图模式分析:PyTorch Compile组件解析
人工智能·pytorch·python
Danceful_YJ19 分钟前
25.样式迁移
人工智能·python·深度学习
woshihonghonga33 分钟前
Deepseek在它擅长的AI数据处理领域还有是有低级错误【k折交叉验证中每折样本数计算】
人工智能·python·深度学习·机器学习
乌恩大侠36 分钟前
以 NVIDIA Sionna Research Kit 赋能 AI 原生 6G 科研
人工智能·usrp
三掌柜6661 小时前
借助 Kiro:实现《晚间手机免打扰》应用,破解深夜刷屏困境
人工智能·aws
飞雁科技1 小时前
CRM客户管理系统定制开发:如何精准满足企业需求并提升效率?
大数据·运维·人工智能·devops·驻场开发
飞雁科技1 小时前
上位机软件定制开发技巧:如何打造专属工业解决方案?
大数据·人工智能·软件开发·devops·驻场开发
这张生成的图像能检测吗1 小时前
SAMWISE:为文本驱动的视频分割注入SAM2的智慧
人工智能·图像分割·视频·时序