基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习

1. 环境与模块准备

导入torchtorch.nntorch.optim等 PyTorch 核心模块,以及numpytorchvision等工具库,用于模型构建、优化、数据处理;同时定义超参数(如批次大小BATCHSIZE=100、训练轮数EPOCHES=20、学习率LR=0.001等)。

2. 模型定义

构建了多类 CNN 模型,覆盖不同复杂度:

  • 基础 CNN 模型CNNNetNetLeNet,结构相近,由卷积层(Conv2d池化层(MaxPool2d 、* 全连接层(Linear)* 组成,通过 ReLU 激活引入非线性,属于轻量型 CNN。
  • VGG 模型VGG(支持 VGG16/VGG19),通过配置字典cfg定义 "卷积块 + 池化层" 的重复结构,利用_make_layers方法自动生成层序列,最终接全连接层完成分类,属于深度化 CNN。

3. 数据处理

基于torchvision加载CIFAR10 数据集,并定义数据变换:

  • 训练集:加入RandomCrop(随机裁剪)、RandomHorizontalFlip(水平翻转)增强数据多样性,再通过ToTensor(转张量)、Normalize(标准化)统一数据分布。
  • 测试集:仅保留ToTensorNormalize,避免数据增强引入额外噪声。随后通过DataLoader创建训练 / 测试数据加载器,实现批量数据迭代。

4. 模型训练与评估

采用两种策略开展训练与性能评估:

  • 集成学习(投票机制) :将CNNNetNetLeNet封装为列表,共享Adam优化器与CrossEntropyLoss损失函数。训练时,每个模型独立前向传播、计算损失并反向传播更新参数;测试时,各模型输出预测结果,通过 "多数表决" 得到集成模型的预测,最终对比集成模型与单模型的准确率。
  • 单模型(VGG16)训练 :单独训练VGG('VGG16'),流程与集成方法一致,重点跟踪 VGG16 在每轮训练后的测试准确率。

核心意图

通过对比基础 CNN 模型集成模型深度 VGG 模型 的性能,展现模型结构复杂度 (如网络深度)、集成学习策略对 CIFAR10 图像分类任务准确率的影响。

5.代码

相关推荐
GIS数据转换器1 分钟前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
OJAC11119 分钟前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心22 分钟前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云37 分钟前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周43 分钟前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
xier_ran1 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
ModestCoder_1 小时前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
海边夕阳20061 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
2501_918126912 小时前
如何用ai做开发
人工智能
f***a3462 小时前
开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)
人工智能·spring·开源