[自动驾驶 SoC]-3 英伟达Orin

NVIDIA® Jetson AGX OrinTM series (资料来源:nvidia-jetson-agx-orin-technical-brief.pdf)

1 整体介绍

1) Orin SoC结构

Orin SoC,如下图所示,由一个NVIDIA Ampere architecture GPU, Arm® Cortex®-A78AE CPU, 下一代深度学习核视觉处理加速器, 视频编码器和视频解码器组成。

2) Orin和Xavier配置对比

3) AGX ORIN分为32GB、64GB两种模块

2 核心模块说明

1) GPU

GPU由两个GPC组成,共计16个SM单元,192KB L1 Cache和4MB L2 Cache。每个SM具备128个CUDA核(共计2048个-5.3 FP32 TFLOPs)和4个第三代Tensor核(共计64个-170 sparse TOPs INT8)。

2) Tensor核

主要提供矩阵乘法累加计算,支持16个半精度HMMA和32个整型IMMA,并且支持稀疏计算。

3) TensorRT和cuDNN

TensorRT 是一个深度学习推理的运行时库和优化器,提供低的延迟和高吞吐量,用于解析训练好的模型,通过将模型量化到 INT8 格式、优化 GPU 内存和带宽利用(如内核节点融合)以及选择最佳的数据层和算法,最大化推理性能。

cuDNN提供了深度神经网络常见操作的高度优化实现,例如卷积前向和反向、交叉相关、池化前向和反向、softmax 前向和反向以及张量变换功能等。

4) DLA

DLA 2.0 提供了高效能的架构,增加了本地缓冲区,提高了能效并减少了 DRAM 带宽。同时DLA 2.0 引入了结构化稀疏性、深度卷积和硬件调度器等新特性,支持最多 105 INT8 稀疏 TOPs 性能,相比 Jetson AGX Xavier DLA 的 11.4 INT8 密集 TOPs 大幅提升。

用户可以使用 TensorRT 加速 DLA 上的模型,NVIDIA DLA 设计用于从 GPU 卸载深度学习推理,使 GPU 能够运行更复杂的网络和动态任务;TensorRT 支持在 DLA 上运行 INT8 或 FP16 的网络,并支持卷积、反卷积、全连接、激活、池化、批量归一化等层。

5) CPU

CPU使用ARM Cortex-A78AE CPU 取代了 NVIDIA Carmel CPU,包含 12 个 CPU 核心,每个核心具有 64KB 的指令 L1 缓存和 64KB 的数据缓存,以及 256KB 的 L2 缓存,每个集群还具有 2MB 的 L3 缓存,最高支持 2.2 GHz 的 CPU 频率。

6) AI性能对比

3 实例介绍

1)自动泊车系统

1.1) 环境感知:摄像头捕捉停车场景,LiDAR扫描周围环境。

处理单元:CUDA核心处理图像预处理,Tensor核心运行YOLO等物体检测模型识别停车位和障碍物。

1.2) 路径规划:计算最优泊车路径。

处理单元:ARM CPU核(可结合DLA核-支持3D建模、路径规划、语义理解等)运行路径规划算法(如 A* 或 Dijkstra 算法),生成泊车轨迹。

1.3) 传感器融合:融合摄像头和LiDAR数据,生成准确的停车场景。

处理单元:CUDA核心处理数据融合,ARM CPU核进行高层次决策生成统一环境模型。

1.4) 车辆控制:执行泊车操作。

处理单元:ARM CPU核控制转向和速度,实现平稳泊车。

2) 计算机视觉处理

NVIDIA Jetson AGX Orin 通过 PVA 和 VIC 提供了强大的计算机视觉处理能力,结合 VPI 软件库,可以灵活地在多种硬件组件上运行复杂的视觉算法,从而优化计算资源的利用。

2.1)可编程视觉加速器(PVA)

双7路 VLIW(超长指令字)矢量处理单元:可以并行处理多个指令,提高计算效率。

双 DMA 引擎:用于高效的数据传输,减少数据传输的瓶颈。

Cortex-R5 子系统:负责控制和调度任务,提供实时处理能力。

PVA 支持:滤波,对图像进行平滑或增强处理;图像扭曲,调整图像的几何形状;图像金字塔,多分辨率图像表示,用于检测不同尺度的特征;特征检测,检测图像中的关键点;快速傅里叶变换(FFT),用于频域分析。

2.2)视频成像合成器(VIC)2D 引擎

VIC 支持的图像处理功能:镜头畸变校正,增强时间噪声减少,频锐化增强,颜色空间转换,图像缩放,图像混合与合成。

2.3)视觉编程接口(VPI)

VPI 是一个软件库,旨在实现计算机视觉和图像处理算法的硬件加速。它支持在 PVA、VIC、CPU 和 GPU 上运行计算机视觉任务,从而有效地分配计算资源。例如,基本图像处理(如框滤波、卷积、图像重缩放和重映射);复杂计算机视觉算法(如 Harris 角点检测、KLT 特征跟踪、光流、背景减法等)。

2.4) 立体视差估计(Stereo Disparity Estimation)流水线示例

**输入:**来自立体相机的左图像和右图像。

处理步骤:

a) 镜头畸变校正和图像缩放:由 VIC 处理。

b) 颜色转换为灰度图像:由 GPU 处理。

c) 特征检测和立体匹配:由 PVA 和 NVENC 处理。

**输出:**生成输入图像之间的视差估计,反映场景深度。

相关推荐
灏瀚星空3 分钟前
地磁-惯性-视觉融合制导系统设计:现代空战导航的抗干扰解决方案
图像处理·人工智能·python·深度学习·算法·机器学习·信息与通信
Livan.Tang6 分钟前
LIO-SAM框架理解
人工智能·机器学习·slam
-曾牛12 分钟前
Spring AI 集成 Mistral AI:构建高效多语言对话助手的实战指南
java·人工智能·后端·spring·microsoft·spring ai
迅易科技23 分钟前
当数控编程“联姻”AI:制造工厂的“智能大脑”如何炼成?
人工智能·ai·知识图谱·ai编程·deepseek
英英_24 分钟前
MATLAB中矩阵和数组的区别
机器学习·matlab·矩阵
沫儿笙30 分钟前
KUKA库卡焊接机器人智能气阀
人工智能·物联网·机器人
浪淘沙jkp34 分钟前
AI大模型学习十八、利用Dify+deepseekR1 +本地部署Stable Diffusion搭建 AI 图片生成应用
人工智能·stable diffusion·agent·dify·ollama·deepseek
郜太素40 分钟前
PyTorch 中神经网络相关要点(损失函数,学习率)及优化方法总结
人工智能·pytorch·python·深度学习·神经网络·学习
健康胡42 分钟前
仿射变换 与 透视变换
图像处理·人工智能·深度学习·opencv·算法·机器学习·计算机视觉
森哥的歌42 分钟前
AI背景下,如何重构你的产品?
人工智能·ai·数字化转型·用户体验·产品设计