AI数据分析:集中度分析和离散度分析

在deepseek中输入提示词:

你是一个Python编程专家,要完成一个Python脚本编写的任务,具体步骤如下:

读取Excel表格:"F:\AI自媒体内容\AI行业数据分析\toolify月榜\toolify2023年-2024年月排行榜汇总数据.xlsx"

计算第2列第1行-20行数据组的:

最大值

最小值

均值

中位数

极差

方差

标准差

20%分位数

25%分位数

75%分位数

80%分位数

将计算结果写入第2列第21行-31行;

然后按照上面的计算步骤一直计算到第15列第21行-31行;

计算第2列第1行(设为数据起点)到第15列第1行(设为数据终点)数据组的简单年均增长率,写入第16列第1行,然后计算第2行,第3行数据,一直计算到第20行;

计算第2列第1行(设为数据起点)到第15列第1行(设为数据终点)数据组的复合年均增长率,然后计算第2行,第3行数据,一直计算到第20行;

注意:每一步都输出信息到屏幕

一步步的思考,但是代码要整合在一起

计算复合年均增长率的时候,年数n是固定值:13

源代码:

import pandas as pd

import numpy as np

读取Excel文件

file_path = "F:\\AI自媒体内容\\AI行业数据分析\\toolify月榜\\toolify2023年-2024年月排行榜汇总数据.xlsx"

df = pd.read_excel(file_path)

计算第2列到第15列的统计量并写入新的单元格

for i in range(1, 15):

data = df.iloc[0:20, i] # 第i列的数据

stats = {

'最大值': np.max(data),

'最小值': np.min(data),

'均值': np.mean(data),

'中位数': np.median(data),

'极差': np.ptp(data),

'方差': np.var(data),

'标准差': np.std(data),

'20%分位数': np.percentile(data, 20),

'25%分位数': np.percentile(data, 25),

'75%分位数': np.percentile(data, 75),

'80%分位数': np.percentile(data, 80)

}

将计算结果写入新的单元格

for j, (stat_name, stat_value) in enumerate(stats.items(), start=20):

df.iloc[j, i] = stat_value

print(f"第{i+1}列的{stat_name}已经写入第{j+1}行。")

计算简单年均增长率并写入第16列

for i in range(1, 21):

start_value = df.iloc[i-1, 1] # 起点数据

end_value = df.iloc[i-1, 14] # 终点数据

growth_rate = ((end_value - start_value) / start_value) * 100

df.iloc[i-1, 15] = growth_rate

print(f"第{i}行的简单年均增长率已经写入第16列。")

计算复合年均增长率(假设年数为13年)并写入第17列

n = 13 # 固定年数

for i in range(1, 21):

start_value = df.iloc[i-1, 1] # 起点数据

end_value = df.iloc[i-1, 14] # 终点数据

compound_growth_rate = ((end_value / start_value) ** (1/n) - 1) * 100

df.iloc[i-1, 16] = compound_growth_rate

print(f"第{i}行的复合年均增长率(假设年数为13年)已经写入第17列。")

将更新后的DataFrame写入Excel文件

with pd.ExcelWriter(file_path, engine='openpyxl', mode='a', if_sheet_exists='overlay') as writer:

df.to_excel(writer, sheet_name='Sheet1', startrow=1, startcol=0, index=False)

print("所有计算结果已经写入Excel文件。")

相关推荐
计算机源码社1 小时前
分享一个基于Hadoop+spark的超市销售数据分析与可视化系统,超市顾客消费行为分析系统的设计与实现
大数据·hadoop·数据分析·spark·计算机毕业设计源码·计算机毕设选题·大数据选题推荐
R-G-B1 小时前
【P27 4-8】OpenCV Python——Mat类、深拷贝(clone、copyTo、copy)、浅拷贝,原理讲解与示例代码
人工智能·python·opencv·浅拷贝·深拷贝·opencv python·mat类
ABCDnnie1 小时前
机器学习03-sklearn模型评估指标与knn算法
人工智能·机器学习·sklearn
黎燃1 小时前
智能制造中的AI预测性维护:从理论到实战的深度解析
人工智能
zskj_zhyl1 小时前
银发经济时代:科技赋能养老,温情守护晚年,让老人不再孤独无助
大数据·人工智能·科技·生活
Qforepost1 小时前
智汇河套,量子“风暴”:量子科技未来产业发展论坛深度研讨加速产业成果转化
人工智能·量子计算·量子
coding者在努力1 小时前
从零开始:用PyTorch实现线性回归模型
人工智能·pytorch·线性回归
Giser探索家2 小时前
低空智航平台技术架构深度解析:如何用AI +空域网格破解黑飞与安全管控难题
大数据·服务器·前端·数据库·人工智能·安全·架构
静心问道2 小时前
CacheBlend:结合缓存知识融合的快速RAG大语言模型推理服务
人工智能·语言模型·模型加速
云卓SKYDROID2 小时前
无人机智能返航模块技术分析
人工智能·数码相机·无人机·高科技·云卓科技