梯度提升决策树(GBDT)的训练过程

以下通过案例(根据行为习惯预测年龄)帮助我们深入理解梯度提升决策树(GBDT)的训练过程

假设训练集有4个人(A、B、C、D),他们的年龄分别是14、16、24、26。其中A、B分别是高一和高三学生;C、D分别是应届毕业生和工作两年的员工

下面我们将分别使用回归树和GBDT,通过他们的日常行为习惯(购物、上网等)预测每个人的年龄

1、使用回归树训练

回归树训练得到的结果如图所示:


2、使用GBDT训练

由于我们的样本数据较少,所以我们限定叶子节点最多为2(即每棵树都只有一个分枝),并且限定树的棵树为2

梯度提升决策树(GBDT)的训练过程如下:

1) 第一棵树:假设初始值为平均年龄20,得到的结果如图所示:

上图中,A、B的购物金额不超过1k,C、D的购物金额超过1k,因此被分为左右两个分支,每个分支使用平均年龄作为预测值

分别计算A、B、C、D的残差(实际值减预测值):

  • A残差 = 14 − 15 = − 1 \tt =14-15=-1 =14−15=−1
  • B残差 = 16 − 15 = 1 \tt =16-15=1 =16−15=1
  • C残差 = 24 − 25 = − 1 \tt =24-25=-1 =24−25=−1
  • D残差 = 26 − 25 = 1 \tt =26-25=1 =26−25=1

以A为例,这里A的预测值是指前面所有树预测结果的累加和,当前由于只有一棵树,所以直接是15,其他同理

2) 第二棵树:拟合前一棵树的残差-1、1、-1、1,得到的结果如图所示:

上图中,A、C的上网时间超过1h,B、D的上网时间不超过1h,因此被分为左右两个分支,每个分支使用平均残差作为预测值

分别计算A、B、C、D的残差(实际值减预测值):

  • A残差 = − 1 − ( − 1 ) = 0 \tt =-1-(-1)=0 =−1−(−1)=0
  • B残差 = 1 − 1 = 0 \tt =1-1=0 =1−1=0
  • C残差 = − 1 − ( − 1 ) = 0 \tt =-1-(-1)=0 =−1−(−1)=0
  • D残差 = 1 − 1 = 0 \tt =1-1=0 =1−1=0

第二棵树学习第一棵树的残差,在当前这个简单场景下,已经能够保证预测值与实际值(上一轮残差)相等了,此时停止迭代

3) 迭代终止后,最后就是集成,累加所有决策树的预测结果作为最终GBDT的预测结果

本案例中,我们最终得到GBDT的预测结果为第一棵树的预测结果加第二棵树的预测结果

  • A:真实年龄14岁,预测年龄 15 + ( − 1 ) = 14 \tt 15+(-1)=14 15+(−1)=14
  • B:真实年龄16岁,预测年龄 15 + 1 = 16 \tt 15+1=16 15+1=16
  • C:真实年龄24岁,预测年龄 25 + ( − 1 ) = 24 \tt 25+(-1)=24 25+(−1)=24
  • D:真实年龄26岁,预测年龄 25 + 1 = 26 \tt 25+1=26 25+1=26

综上所述,GBDT需要将多棵树的预测结果累加,得到最终的预测结果,且每轮迭代都是在当前树的基础上,增加一棵新树去拟合前一个树预测值与真实值之间的残差

相关推荐
爱思德学术3 分钟前
中国计算机学会(CCF)推荐学术会议-C(数据库/数据挖掘/内容检索):PAKDD 2026
大数据·机器学习·数据挖掘·知识发现
WHS-_-20222 小时前
Superpixel-Based CFAR Target Detection for High-Resolution SAR Images
机器学习·计算机视觉·目标跟踪
红纸2813 小时前
Subword算法之WordPiece、Unigram与SentencePiece
人工智能·python·深度学习·神经网络·算法·机器学习·自然语言处理
zy_destiny3 小时前
【工业场景】用YOLOv8实现反光衣识别
人工智能·python·yolo·机器学习·计算机视觉
松果财经5 小时前
千亿级赛道,Robobus 赛道中标新加坡自动驾驶巴士项目的“确定性机会”
人工智能·机器学习·自动驾驶
Blossom.1185 小时前
用一颗MCU跑通7B大模型:RISC-V+SRAM极致量化实战
人工智能·python·单片机·嵌入式硬件·opencv·机器学习·risc-v
ARM+FPGA+AI工业主板定制专家10 小时前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
lisw0516 小时前
SolidWorks:现代工程设计与数字制造的核心平台
人工智能·机器学习·青少年编程·软件工程·制造
学Linux的语莫16 小时前
机器学习数据处理
java·算法·机器学习
递归不收敛17 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:1.3 特征工程与模型优化
pytorch·学习·机器学习