multiprocessing.Queue 多个进程生产和多个进程消费怎么处理

在这个示例中,我们创建了一个队列 q,并通过 multiprocessing.Manager().Queue() 来确保队列可以在多个进程之间共享。我们定义了 consumerproducer 函数,分别用于从队列中获取数据和向队列中放入数据。

在主进程中,我们创建了多个消费者和生产者进程,并将它们启动。生产者进程将数据放入队列,消费者进程从队列中取出数据并处理。生产者进程完成后,我们向队列发送 None 作为结束信号,告知消费者没有更多数据。每个消费者在接收到 None 后会停止工作。

注意,我们在 consumer 函数中使用了 queue.task_done() 来标记任务完成。这是可选的,但在使用 join() 方法等待队列中的所有任务完成时很有用。

这个模式允许多个生产者并发地向队列中放入数据,同时多个消费者并发地从队列中取出并处理数据,直到所有生产者完成生产,消费者接收到结束信号。

当使用 multiprocessing.Queue 进行多个生产者和多个消费者的场景时,队列可以很好地协调这些进程。以下是一个示例,展示了如何创建多个生产者和多个消费者,它们共享同一个队列:

python 复制代码
# encoding:utf-8
import multiprocessing
import time
import random

def consumer(queue):
    """
    作者:阙辉
    """
    while True:
        item = queue.get()  # 从队列中获取数据
        if item is None:
            print(f"Consumer {multiprocessing.current_process().name} received end signal.")
            queue.task_done()  # 标记任务完成
            break
        print(f"Consumer {multiprocessing.current_process().name} received {item}")
        time.sleep(random.uniform(0.5, 1.5))  # 模拟处理时间
        queue.task_done()  # 标记任务完成

def producer(queue, items):
    """
    作者:阙辉
    """
    for item in items:
        print(f"Producer {multiprocessing.current_process().name} sent {item}")
        queue.put(item)
        time.sleep(random.uniform(0.5, 1.5))  # 模拟生产时间

if __name__ == '__main__':
    manager = multiprocessing.Manager()
    q = manager.Queue()  # 使用 Manager.Queue 来支持多个生产者和消费者模式

    # 创建多个消费者进程
    consumers = [multiprocessing.Process(target=consumer, args=(q,)) for _ in range(4)]

    # 创建多个生产者进程
    producers = [multiprocessing.Process(target=producer, args=(q, range(20))) for _ in range(4)]

    # 启动所有消费者进程
    for c in consumers:
        c.start()

    # 启动所有生产者进程
    for p in producers:
        p.start()

    # 等待所有生产者完成
    for p in producers:
        p.join()

    # 发送结束信号,告知所有消费者没有更多数据
    for _ in consumers:
        q.put(None)

    # 等待所有消费者完成
    for c in consumers:
        c.join()

    print("All tasks completed.")
相关推荐
山岚的运维笔记19 分钟前
SQL Server笔记 -- 第68章:内存中 OLTP(Hekaton)
数据库·笔记·sql·microsoft·sqlserver
IRevers39 分钟前
【YOLO】YOLO-Master 腾讯轻量级YOLO架构超越YOLO-13(含检测和分割推理)
图像处理·人工智能·pytorch·python·yolo·transformer·边缘计算
懒惰成性的42 分钟前
Java方法的使用
java·开发语言
wangbing11251 小时前
Java构造函数不能加void
java·开发语言
重生之后端学习1 小时前
207. 课程表
java·数据结构·算法·职场和发展·深度优先
嵌入式×边缘AI:打怪升级日志1 小时前
9.2.1 分析 Write File Record 功能(保姆级讲解)
java·开发语言·网络
橙露1 小时前
Python 异步爬虫进阶:协程 + 代理池高效爬取实战
开发语言·爬虫·python
山岚的运维笔记1 小时前
SQL Server笔记 -- 第67章:数据库邮件(DBMAIL)
数据库·笔记·sql·microsoft·sqlserver
阿在在2 小时前
Spring 系列(三):Spring PostProcessor 顶级扩展接口全解析
java·后端·spring
kylezhao20192 小时前
C#异步和并发在IO密集场景的典型应用 async/await
开发语言·数据库·c#