深入浅出 langchain 1. Prompt 与 Model

示例

从代码入手来看原理

python 复制代码
from langchain_core.output_parsers import StrOutputParser  
from langchain_core.prompts import ChatPromptTemplate  
from langchain_openai import ChatOpenAI  
  
prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}")  
model = ChatOpenAI(model="gpt-4")  
output_parser = StrOutputParser()  
  
chain = prompt | model | output_parser  
  
chain.invoke({"topic": "ice cream"})

chain = prompt | model | output_parser

|是 Unix 管道操作符, 将不同的组件链接到一起, 一组组件的输出作为下一组件的输入.

Prompt

prompt 是一个 BasePromptTemplate ,这意味着它接收一个模板变量的字典并生成一个 PromptValue 。一个 PromptValue 是一个完成提示的包装器,可以传递给 LLM (接受字符串作为输入)或 ChatModel (接受消息序列作为输入)。它可以与任何语言模型类型一起工作,因为它定义了生成 BaseMessage 和生成字符串的逻辑。

以下是 PromptValue 的输入

python 复制代码
prompt_value = prompt.invoke({"topic": "ice cream"})

prompt_value
# ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])

prompt_value.to_messages()
# [HumanMessage(content='tell me a short joke about ice cream')]

prompt_value.to_string()
# 'Human: tell me a short joke about ice cream'

Model

然后将 PromptValue 传递给 model 。在这种情况下,我们的 model 是一个 ChatModel ,意味着它将输出一个 BaseMessage

python 复制代码
message = model.invoke(prompt_value)  

message
# AIMessage(content="Why don't ice creams ever get invited to parties?\n\nBecause they always bring a melt down!")

如果我们的 model 是一个 LLM ,它会输出一个字符串。

python 复制代码
from langchain_openai.llms import OpenAI  
  
llm = OpenAI(model="gpt-3.5-turbo-instruct")  
llm.invoke(prompt_value)

# '\n\nRobot: Why did the ice cream truck break down? Because it had a meltdown!'

Output parser

最后,我们将我们的 model 输出传递给 output_parser ,这是一个 BaseOutputParser ,它接受字符串或 BaseMessage 作为输入。这个 StrOutputParser 特别简单地将任何输入转换为字符串

python 复制代码
output_parser.invoke(message)

# "Why did the ice cream go to therapy? \n\nBecause it had too many toppings and couldn't find its cone-fidence!"

Summary

运行流程图如下:

我们将用户输入变成字典后, 传递给 PromptTemplate 包装成 PromptValue, 传递给 ChatModel 后, Model 给我们返回 ChatMessage, 再将其传递给 StrOutputParser, 最终解析成 String 类型

相关推荐
水如烟5 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学5 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19825 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮6 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手6 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋6 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-6 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView6 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7776 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云6 小时前
Claude Code:进入dash模式
人工智能