深度学习每周学习总结J1(ResNet-50算法实战与解析 - 鸟类识别)

目录

      • [0. 总结](#0. 总结)
      • [1. 设置GPU](#1. 设置GPU)
      • [2. 导入数据及处理部分](#2. 导入数据及处理部分)
      • [3. 划分数据集](#3. 划分数据集)
      • [4. 模型构建部分](#4. 模型构建部分)
      • [5. 设置超参数:定义损失函数,学习率,以及根据学习率定义优化器等](#5. 设置超参数:定义损失函数,学习率,以及根据学习率定义优化器等)
      • [6. 训练函数](#6. 训练函数)
      • [7. 测试函数](#7. 测试函数)
      • [7. 正式训练](#7. 正式训练)
      • [9. 结果可视化](#9. 结果可视化)
      • [10. 模型的保存](#10. 模型的保存)
      • [11. 使用训练好的模型进行预测](#11. 使用训练好的模型进行预测)

0. 总结

数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。

划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.

模型构建部分:resnet-50

设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。

定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。函数内部初始化损失准确率为0,接着开始循环,使用DataLoader()获取一个批次的数据,对这个批次的数据带入模型得到预测值,然后使用损失函数计算得到损失值。接下来就是进行反向传播以及使用优化器优化参数,梯度清零放在反向传播之前或者是使用优化器优化之后都是可以的,一般是默认放在反向传播之前。

定义测试函数:函数传入的参数相比训练函数少了优化器,只需传入设置好的DataLoader(),定义好的模型,损失函数。此外除了处理批次数据时无需再设置梯度清零、返向传播以及优化器优化参数,其余部分均和训练函数保持一致。

训练过程:定义训练次数,有几次就使用整个数据集进行几次训练,初始化四个空list分别存储每次训练及测试的准确率及损失。使用model.train()开启训练模式,调用训练函数得到准确率及损失。使用model.eval()将模型设置为评估模式,调用测试函数得到准确率及损失。接着就是将得到的训练及测试的准确率及损失存储到相应list中并合并打印出来,得到每一次整体训练后的准确率及损失。

结果可视化

模型的保存,调取及使用。在PyTorch中,通常使用 torch.save(model.state_dict(), 'model.pth') 保存模型的参数,使用 model.load_state_dict(torch.load('model.pth')) 加载参数。

需要改进优化的地方:在保证整体流程没有问题的情况下,继续细化细节研究,比如一些函数的原理及作用,如何提升训练集准确率等问题。

python 复制代码
import torch
import torch.nn as nn
import torchvision
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
import torchvision.models as models
import torch.nn.functional as F

import os,PIL,pathlib
import matplotlib.pyplot as plt
import warnings

warnings.filterwarnings('ignore') # 忽略警告信息

plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False   # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率

1. 设置GPU

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

2. 导入数据及处理部分

python 复制代码
# 获取数据分布情况
path_dir = './data/bird_photos/'
path_dir = pathlib.Path(path_dir)

paths = list(path_dir.glob('*'))
# classNames = [str(path).split("\\")[-1] for path in paths] # ['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
classNames = [path.parts[-1] for path in paths]
classNames
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
python 复制代码
# 定义transforms 并处理数据
train_transforms = transforms.Compose([
    transforms.Resize([224,224]),      # 将输入图片resize成统一尺寸
    transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),             # 将PIL Image 或 numpy.ndarray 装换为tensor,并归一化到[0,1]之间
    transforms.Normalize(              # 标准化处理 --> 转换为标准正太分布(高斯分布),使模型更容易收敛
        mean = [0.485,0.456,0.406],    # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
        std = [0.229,0.224,0.225]
    )
])
test_transforms = transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.485,0.456,0.406],
        std = [0.229,0.224,0.225]
    )
])
total_data = datasets.ImageFolder('./data/bird_photos/',transform = train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 565
    Root location: ./data/bird_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               RandomHorizontalFlip(p=0.5)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
python 复制代码
total_data.class_to_idx
{'Bananaquit': 0,
 'Black Skimmer': 1,
 'Black Throated Bushtiti': 2,
 'Cockatoo': 3}

3. 划分数据集

python 复制代码
# 划分数据集
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size

train_dataset,test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset
(<torch.utils.data.dataset.Subset at 0x23b545994b0>,
 <torch.utils.data.dataset.Subset at 0x23b54599300>)
python 复制代码
# 定义DataLoader用于数据集的加载

batch_size = 32

train_dl = torch.utils.data.DataLoader(
    train_dataset,
    batch_size = batch_size,
    shuffle = True,
    num_workers = 1
)
test_dl = torch.utils.data.DataLoader(
    test_dataset,
    batch_size = batch_size,
    shuffle = True,
    num_workers = 1
)
python 复制代码
# 观察数据维度
for X,y in test_dl:
    print("Shape of X [N,C,H,W]: ",X.shape)
    print("Shape of y: ", y.shape,y.dtype)
    break
Shape of X [N,C,H,W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

4. 模型构建部分

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class ConvBlock(nn.Module):
    def __init__(self, in_channels, filters, kernel_size, strides=1):
        super(ConvBlock, self).__init__()
        filters1, filters2, filters3 = filters

        self.conv1 = nn.Conv2d(in_channels, filters1, kernel_size=1, stride=strides)
        self.bn1 = nn.BatchNorm2d(filters1)
        self.conv2 = nn.Conv2d(filters1, filters2, kernel_size=kernel_size, padding=1)
        self.bn2 = nn.BatchNorm2d(filters2)
        self.conv3 = nn.Conv2d(filters2, filters3, kernel_size=1)
        self.bn3 = nn.BatchNorm2d(filters3)

        self.shortcut = nn.Sequential()
        if in_channels != filters3 or strides != 1:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, filters3, kernel_size=1, stride=strides),
                nn.BatchNorm2d(filters3)
            )
        
    def forward(self, x):
        shortcut = self.shortcut(x)

        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.bn3(self.conv3(x))

        x += shortcut
        x = F.relu(x)
        return x

class ResNet50(nn.Module):
    def __init__(self, num_classes=1000):
        super(ResNet50, self).__init__()
        self.pad = nn.ZeroPad2d(3)
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.bn1 = nn.BatchNorm2d(64)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # Define block layers with appropriate strides and filter sizes
        self.layer1 = self._build_layer(64, [64, 64, 256], blocks=3, strides=1)
        self.layer2 = self._build_layer(256, [128, 128, 512], blocks=4, strides=2)
        self.layer3 = self._build_layer(512, [256, 256, 1024], blocks=6, strides=2)
        self.layer4 = self._build_layer(1024, [512, 512, 2048], blocks=3, strides=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(2048, num_classes)

    def _build_layer(self, in_channels, filters, blocks, strides=1):
        layers = []
        # Add the first block with potential downsampling (by strides)
        layers.append(ConvBlock(in_channels, filters, kernel_size=3, strides=strides))
        in_channels = filters[-1]
        # Add the additional blocks in this layer without downsampling
        for _ in range(1, blocks):
            layers.append(ConvBlock(in_channels, filters, kernel_size=3, strides=1))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.pad(x)
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x

# Ensure the model uses the correct device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResNet50()
model.to(device)
ResNet50(
  (pad): ZeroPad2d((3, 3, 3, 3))
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): ConvBlock(
      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ConvBlock(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): ConvBlock(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer2): Sequential(
    (0): ConvBlock(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(2, 2))
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ConvBlock(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): ConvBlock(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (3): ConvBlock(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer3): Sequential(
    (0): ConvBlock(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(2, 2))
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2))
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ConvBlock(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): ConvBlock(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (3): ConvBlock(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (4): ConvBlock(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (5): ConvBlock(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer4): Sequential(
    (0): ConvBlock(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(2, 2))
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2))
        (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ConvBlock(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): ConvBlock(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)

5. 设置超参数:定义损失函数,学习率,以及根据学习率定义优化器等

python 复制代码
# loss_fn = nn.CrossEntropyLoss() # 创建损失函数

# learn_rate = 1e-3 # 初始学习率
# def adjust_learning_rate(optimizer,epoch,start_lr):
#     # 每两个epoch 衰减到原来的0.98
#     lr = start_lr * (0.92 ** (epoch//2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr
        
# optimizer = torch.optim.Adam(model.parameters(),lr=learn_rate)
python 复制代码
# 调用官方接口示例
loss_fn = nn.CrossEntropyLoss()

learn_rate = 1e-4
lambda1 = lambda epoch:(0.92**(epoch//2))

optimizer = torch.optim.Adam(model.parameters(),lr = learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1) # 选定调整方法

6. 训练函数

python 复制代码
# 训练函数
def train(dataloader,model,loss_fn,optimizer):
    size = len(dataloader.dataset) # 训练集大小
    num_batches = len(dataloader) # 批次数目
    
    train_loss,train_acc = 0,0
    
    for X,y in dataloader:
        X,y = X.to(device),y.to(device)
        
        # 计算预测误差
        pred = model(X)
        loss = loss_fn(pred,y)
        
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        # 记录acc与loss
        train_acc += (pred.argmax(1)==y).type(torch.float).sum().item()
        train_loss += loss.item()
        
    train_acc /= size
    train_loss /= num_batches
    
    return train_acc,train_loss

7. 测试函数

python 复制代码
# 测试函数
def test(dataloader,model,loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    
    test_acc,test_loss = 0,0
    
    with torch.no_grad():
        for X,y in dataloader:
            X,y = X.to(device),y.to(device)
            
            # 计算loss
            pred = model(X)
            loss = loss_fn(pred,y)
            
            test_acc += (pred.argmax(1)==y).type(torch.float).sum().item()
            test_loss += loss.item()
            
    test_acc /= size
    test_loss /= num_batches
    
    return test_acc,test_loss

7. 正式训练

python 复制代码
import copy

epochs = 40

train_acc = []
train_loss = []
test_acc = []
test_loss = []

best_acc = 0.0

for epoch in range(epochs):
    
    # 更新学习率------使用自定义学习率时使用
    # adjust_learning_rate(optimizer,epoch,learn_rate)
    
    model.train()
    epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,optimizer)
    scheduler.step() # 更新学习率------调用官方动态学习率时使用
    
    model.eval()
    epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f},Lr:{:.2E}')
    print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,epoch_test_acc*100,epoch_test_loss,lr))

print('Done')
Epoch: 1,Train_acc:35.4%,Train_loss:3.431,Test_acc:23.9%,Test_loss:3.033,Lr:1.00E-04
Epoch: 2,Train_acc:69.2%,Train_loss:0.899,Test_acc:26.5%,Test_loss:3.017,Lr:9.20E-05
Epoch: 3,Train_acc:74.1%,Train_loss:0.652,Test_acc:59.3%,Test_loss:1.278,Lr:9.20E-05
Epoch: 4,Train_acc:78.3%,Train_loss:0.587,Test_acc:67.3%,Test_loss:1.353,Lr:8.46E-05
Epoch: 5,Train_acc:82.5%,Train_loss:0.521,Test_acc:75.2%,Test_loss:0.829,Lr:8.46E-05
Epoch: 6,Train_acc:86.3%,Train_loss:0.433,Test_acc:66.4%,Test_loss:1.308,Lr:7.79E-05
Epoch: 7,Train_acc:90.3%,Train_loss:0.340,Test_acc:67.3%,Test_loss:1.600,Lr:7.79E-05
Epoch: 8,Train_acc:89.2%,Train_loss:0.374,Test_acc:71.7%,Test_loss:1.014,Lr:7.16E-05
Epoch: 9,Train_acc:88.7%,Train_loss:0.305,Test_acc:77.0%,Test_loss:0.841,Lr:7.16E-05
Epoch:10,Train_acc:90.7%,Train_loss:0.309,Test_acc:79.6%,Test_loss:1.094,Lr:6.59E-05
Epoch:11,Train_acc:91.8%,Train_loss:0.318,Test_acc:72.6%,Test_loss:0.976,Lr:6.59E-05
Epoch:12,Train_acc:93.6%,Train_loss:0.243,Test_acc:73.5%,Test_loss:1.209,Lr:6.06E-05
Epoch:13,Train_acc:94.7%,Train_loss:0.159,Test_acc:71.7%,Test_loss:0.947,Lr:6.06E-05
Epoch:14,Train_acc:98.0%,Train_loss:0.076,Test_acc:80.5%,Test_loss:0.707,Lr:5.58E-05
Epoch:15,Train_acc:97.8%,Train_loss:0.083,Test_acc:79.6%,Test_loss:0.923,Lr:5.58E-05
Epoch:16,Train_acc:98.2%,Train_loss:0.059,Test_acc:82.3%,Test_loss:0.650,Lr:5.13E-05
Epoch:17,Train_acc:98.5%,Train_loss:0.072,Test_acc:76.1%,Test_loss:0.828,Lr:5.13E-05
Epoch:18,Train_acc:98.0%,Train_loss:0.175,Test_acc:78.8%,Test_loss:0.834,Lr:4.72E-05
Epoch:19,Train_acc:94.2%,Train_loss:0.173,Test_acc:61.9%,Test_loss:2.606,Lr:4.72E-05
Epoch:20,Train_acc:96.2%,Train_loss:0.123,Test_acc:77.9%,Test_loss:0.959,Lr:4.34E-05
Epoch:21,Train_acc:96.5%,Train_loss:0.166,Test_acc:76.1%,Test_loss:1.266,Lr:4.34E-05
Epoch:22,Train_acc:96.9%,Train_loss:0.196,Test_acc:85.0%,Test_loss:0.698,Lr:4.00E-05
Epoch:23,Train_acc:98.7%,Train_loss:0.082,Test_acc:82.3%,Test_loss:0.626,Lr:4.00E-05
Epoch:24,Train_acc:96.0%,Train_loss:0.136,Test_acc:81.4%,Test_loss:0.805,Lr:3.68E-05
Epoch:25,Train_acc:98.5%,Train_loss:0.101,Test_acc:83.2%,Test_loss:0.576,Lr:3.68E-05
Epoch:26,Train_acc:98.5%,Train_loss:0.062,Test_acc:80.5%,Test_loss:0.597,Lr:3.38E-05
Epoch:27,Train_acc:99.6%,Train_loss:0.039,Test_acc:83.2%,Test_loss:0.574,Lr:3.38E-05
Epoch:28,Train_acc:99.3%,Train_loss:0.080,Test_acc:85.0%,Test_loss:0.758,Lr:3.11E-05
Epoch:29,Train_acc:99.6%,Train_loss:0.059,Test_acc:84.1%,Test_loss:0.608,Lr:3.11E-05
Epoch:30,Train_acc:98.9%,Train_loss:0.054,Test_acc:82.3%,Test_loss:0.753,Lr:2.86E-05
Epoch:31,Train_acc:98.9%,Train_loss:0.035,Test_acc:83.2%,Test_loss:0.617,Lr:2.86E-05
Epoch:32,Train_acc:98.7%,Train_loss:0.046,Test_acc:78.8%,Test_loss:0.847,Lr:2.63E-05
Epoch:33,Train_acc:98.9%,Train_loss:0.028,Test_acc:82.3%,Test_loss:0.746,Lr:2.63E-05
Epoch:34,Train_acc:99.6%,Train_loss:0.032,Test_acc:79.6%,Test_loss:0.629,Lr:2.42E-05
Epoch:35,Train_acc:99.3%,Train_loss:0.027,Test_acc:82.3%,Test_loss:0.597,Lr:2.42E-05
Epoch:36,Train_acc:99.6%,Train_loss:0.029,Test_acc:87.6%,Test_loss:0.488,Lr:2.23E-05
Epoch:37,Train_acc:99.6%,Train_loss:0.026,Test_acc:87.6%,Test_loss:0.552,Lr:2.23E-05
Epoch:38,Train_acc:99.1%,Train_loss:0.029,Test_acc:79.6%,Test_loss:0.572,Lr:2.05E-05
Epoch:39,Train_acc:99.8%,Train_loss:0.107,Test_acc:84.1%,Test_loss:0.704,Lr:2.05E-05
Epoch:40,Train_acc:99.1%,Train_loss:0.094,Test_acc:76.1%,Test_loss:0.772,Lr:1.89E-05
Done

9. 结果可视化

python 复制代码
epochs_range = range(epochs)

plt.figure(figsize = (12,3))

plt.subplot(1,2,1)
plt.plot(epochs_range,train_acc,label = 'Training Accuracy')
plt.plot(epochs_range,test_acc,label = 'Test Accuracy')
plt.legend(loc = 'lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label = 'Test Accuracy')
plt.plot(epochs_range,test_loss,label = 'Test Loss')
plt.legend(loc = 'lower right')
plt.title('Training and validation Loss')
plt.show()

10. 模型的保存

python 复制代码
# 自定义模型保存
# 状态字典保存
torch.save(model.state_dict(),'./模型参数/J1_resnet50_model_state_dict.pth') # 仅保存状态字典

# 加载状态字典到模型
best_model = ResNet50().to(device) # 定义官方vgg16模型用来加载参数

best_model.load_state_dict(torch.load('./模型参数/J1_resnet50_model_state_dict.pth')) # 加载状态字典到模型
<All keys matched successfully>

11. 使用训练好的模型进行预测

python 复制代码
# 指定路径图片预测
from PIL import Image
import torchvision.transforms as transforms

classes = list(total_data.class_to_idx) # classes = list(total_data.class_to_idx)

def predict_one_image(image_path,model,transform,classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img) # 展示待预测的图片
    
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)
    print(output) # 观察模型预测结果的输出数据
    
    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
python 复制代码
# 预测训练集中的某张照片
predict_one_image(image_path='./data/bird_photos/Bananaquit/007.jpg',
                 model = model,
                 transform = test_transforms,
                 classes = classes
                 )
tensor([[13.8683,  4.9143,  4.8488,  0.3971, -4.3269, -6.6820, -5.4773, -4.8104,
         -6.3061, -6.0159, -4.1786, -5.2478, -4.7984, -4.5901, -5.0879, -4.8318,
         -5.1802, -4.8213, -4.1029, -4.8857, -5.7887, -4.4304, -5.2544, -4.4558,
         -3.9174, -4.3528, -5.6769, -5.0493, -4.5999, -6.1482, -4.0200, -3.2741,
         -4.6080, -6.3622, -3.1413, -4.3438, -5.2021, -4.2925, -5.5243, -4.7640,
         -4.9537, -5.5491, -5.6634, -3.9548, -4.3976, -5.2634, -5.1851, -4.0045,
         -6.0956, -4.2346, -4.1718, -4.4907, -4.1201, -4.3656, -4.0707, -5.3282,
         -5.3788, -4.4176, -4.8130, -5.5919, -5.5178, -5.1131, -4.6648, -4.9041,
         -5.3978, -5.4855, -5.0189, -4.8627, -5.7097, -4.2608, -5.3921, -4.4241,
         -5.8152, -5.2379, -5.2549, -5.9455, -4.4937, -5.2863, -5.2548, -5.5048,
         -4.9770, -5.0247, -4.8115, -5.1978, -5.0874, -4.8657, -4.7004, -6.1652,
         -7.1067, -5.3773, -5.5511, -4.6870, -5.7534, -4.9669, -4.2131, -5.3542,
         -4.9979, -5.4464, -5.2461, -4.8821, -5.5314, -5.8627, -4.4703, -4.0505,
         -4.3990, -6.0654, -4.9767, -4.8933, -5.0749, -5.0969, -4.7121, -4.7877,
         -5.9138, -5.0609, -5.6325, -4.4758, -5.3832, -5.3308, -5.1663, -5.3744,
         -4.6568, -5.5547, -4.7015, -4.5332, -4.7048, -4.0575, -4.9354, -5.9719,
         -4.3700, -4.3375, -4.3835, -5.3360, -4.6949, -4.7043, -3.0128, -5.4335,
         -4.1490, -5.5024, -5.1213, -4.5514, -4.3888, -5.1336, -4.9035, -2.9031,
         -4.2921, -5.1654, -4.5989, -5.7990, -5.1267, -4.8723, -5.2425, -5.2648,
         -4.7031, -4.4419, -4.9500, -5.4625, -4.4614, -6.0281, -4.5982, -5.2243,
         -5.2080, -4.5609, -4.2382, -5.6643, -5.3306, -4.9993, -5.4132, -5.1988,
         -4.8110, -4.3645, -4.7883, -4.4945, -4.1371, -6.1615, -4.3348, -6.0694,
         -5.0832, -5.7544, -7.4370, -5.0871, -4.8265, -4.9912, -5.4170, -4.7337,
         -4.8869, -4.2867, -6.0734, -5.3458, -4.6136, -4.6427, -5.0670, -5.2674,
         -5.3138, -6.1891, -4.5351, -5.4272, -4.0822, -3.8868, -5.3524, -4.5716,
         -5.2943, -5.4524, -5.8091, -4.6113, -6.2336, -3.9732, -5.5085, -4.9551,
         -5.8190, -4.7829, -6.0425, -4.4670, -5.0961, -4.8832, -4.9884, -5.3502,
         -4.7928, -4.6363, -5.2002, -5.2305, -6.3564, -4.8475, -5.7222, -4.9972,
         -4.8803, -4.9031, -4.7486, -5.1633, -4.4830, -5.8250, -4.9781, -6.4707,
         -5.1635, -6.2186, -4.6911, -6.1466, -4.3560, -4.0647, -5.6964, -4.6971,
         -4.5650, -5.2661, -4.4342, -6.5263, -5.0083, -4.1184, -4.4144, -4.3142,
         -3.9152, -4.6833, -3.9448, -4.7297, -4.7736, -4.5994, -5.2097, -3.7666,
         -4.4968, -4.7199, -3.7594, -4.8945, -4.8153, -4.3126, -5.4928, -4.2669,
         -4.4810, -5.1798, -6.5569, -6.4180, -6.2858, -5.0941, -4.5702, -5.1153,
         -5.6136, -5.2451, -4.9205, -5.2890, -4.1699, -4.1866, -4.2302, -4.9986,
         -4.8075, -5.6134, -3.6785, -5.4610, -5.5478, -6.9582, -4.6375, -5.1448,
         -4.6614, -5.0536, -4.4895, -5.3882, -4.4433, -5.9130, -5.5548, -5.1081,
         -5.9129, -5.2355, -5.0405, -4.8093, -4.5147, -6.5717, -4.7978, -6.3876,
         -4.6591, -6.3384, -5.6406, -5.2991, -3.7750, -4.6432, -5.0256, -5.9266,
         -4.7254, -5.3511, -4.1279, -5.8108, -5.6086, -4.8933, -4.4658, -4.2604,
         -4.2203, -6.0904, -4.4941, -4.3299, -4.4338, -4.5120, -5.5362, -5.6916,
         -4.3631, -5.7946, -4.5226, -5.0334, -5.3108, -4.6992, -5.8546, -5.3448,
         -4.7411, -4.6165, -5.0561, -3.7938, -4.5349, -6.3409, -5.6717, -5.2238,
         -5.4950, -5.6322, -5.9336, -4.7374, -5.2193, -4.7341, -5.5894, -4.9538,
         -4.9265, -4.3776, -5.9501, -4.6434, -4.7603, -3.4144, -4.9672, -4.5454,
         -4.5984, -4.3427, -5.4971, -4.6948, -4.5390, -4.1352, -5.3147, -5.4603,
         -5.7149, -4.4007, -5.0655, -5.0953, -3.7071, -5.5659, -4.5470, -4.9357,
         -4.5709, -4.9261, -4.6197, -4.9192, -5.8589, -5.4089, -4.1649, -5.2944,
         -5.5576, -5.7486, -4.8553, -4.2282, -4.0010, -6.0522, -5.6085, -5.3450,
         -5.6549, -4.8746, -4.5044, -5.1996, -5.0918, -4.1159, -4.2053, -4.7821,
         -5.6509, -6.5732, -4.7520, -5.1714, -5.1409, -5.1455, -6.2418, -5.0210,
         -5.5984, -3.9693, -5.4372, -5.1220, -5.2193, -4.5396, -4.4132, -5.4393,
         -4.9878, -5.6195, -4.7220, -5.4855, -4.8570, -4.3293, -5.4886, -5.1216,
         -6.0905, -5.6525, -4.9218, -5.5533, -4.9065, -5.2826, -4.3511, -4.3716,
         -4.7577, -5.2228, -4.3568, -5.2613, -7.0981, -4.7413, -4.1612, -5.1176,
         -5.5265, -4.8816, -5.5066, -3.1811, -5.5949, -5.1209, -5.3330, -4.5807,
         -5.0738, -6.2544, -5.7920, -4.8863, -5.4842, -4.1021, -4.2780, -5.6989,
         -4.9062, -4.9241, -4.6026, -3.8766, -4.2304, -5.3913, -3.9213, -4.8042,
         -3.8525, -4.7163, -5.0682, -5.0261, -5.7655, -6.6659, -5.0076, -4.4935,
         -4.9612, -5.2125, -5.8215, -5.3559, -4.8470, -4.5751, -5.2267, -5.7606,
         -5.1162, -5.7072, -4.0790, -5.3081, -4.5741, -5.2311, -5.0682, -3.9425,
         -4.0050, -5.5297, -4.4969, -4.0187, -5.7901, -4.9107, -5.2692, -4.6438,
         -5.0574, -5.8231, -5.3713, -5.0068, -4.3541, -4.4603, -4.4939, -4.8495,
         -5.5300, -4.9960, -3.5204, -4.3364, -6.1883, -4.1293, -5.0230, -4.7546,
         -5.8216, -4.1616, -5.9442, -5.3490, -3.8164, -5.5285, -4.4659, -3.8073,
         -4.0800, -4.3338, -4.8140, -5.4170, -5.5654, -3.5721, -5.4222, -5.4133,
         -5.3061, -5.6210, -5.0620, -4.9480, -5.4236, -5.0383, -4.5365, -6.5556,
         -4.9221, -5.6572, -5.3458, -4.0751, -3.5474, -5.1584, -5.4831, -5.0386,
         -5.1952, -5.7538, -5.2630, -4.6680, -5.3158, -4.4897, -5.2653, -5.6185,
         -5.2754, -4.9732, -3.6142, -3.3807, -5.9308, -3.3762, -4.5909, -4.8592,
         -5.4307, -5.8186, -3.1528, -5.8814, -4.3251, -5.4645, -5.7290, -5.5545,
         -6.9818, -4.6826, -5.2847, -5.2316, -5.3749, -5.5513, -5.0912, -6.0087,
         -5.0094, -5.2834, -5.9248, -4.2985, -5.6460, -4.0210, -5.0835, -5.0239,
         -4.2798, -4.0711, -3.0299, -4.4249, -3.8580, -5.4938, -6.1500, -6.2026,
         -5.5107, -4.6297, -5.2490, -4.1693, -5.5621, -5.3462, -4.4608, -5.4131,
         -4.8175, -4.7294, -5.3795, -4.7759, -4.9308, -4.6114, -4.8512, -5.6910,
         -4.5780, -6.0506, -4.5082, -5.0415, -5.1643, -4.3208, -5.7007, -5.4402,
         -5.0097, -3.7647, -5.9034, -4.9685, -4.2927, -3.3002, -6.0967, -4.7784,
         -5.0862, -4.9967, -5.5023, -4.9356, -5.8725, -4.7621, -4.8660, -5.6542,
         -4.1783, -5.8236, -4.4004, -5.2087, -6.2577, -5.9747, -3.9065, -4.9602,
         -4.9865, -6.0940, -5.1763, -4.1279, -4.7915, -4.5835, -4.4909, -5.0032,
         -4.4306, -5.1279, -5.9237, -5.6016, -4.1580, -5.8993, -5.5826, -5.1257,
         -5.2317, -5.4553, -5.0349, -5.3762, -4.8476, -5.7886, -4.9892, -5.3761,
         -6.2784, -4.3499, -5.6478, -5.4893, -3.0633, -4.5597, -5.5055, -5.4887,
         -5.8181, -5.6683, -6.3172, -4.5253, -5.2920, -4.5857, -5.5727, -4.5398,
         -4.7678, -5.5095, -3.8584, -5.2461, -5.6084, -4.6665, -5.4107, -4.8152,
         -5.4975, -5.0608, -4.3795, -6.9169, -5.0226, -5.4908, -5.5358, -5.0029,
         -5.5313, -4.9354, -4.8460, -4.9901, -4.7630, -4.8377, -5.0652, -5.9628,
         -5.9703, -5.4385, -4.6380, -5.6674, -5.3192, -4.4605, -3.6204, -5.3540,
         -7.2942, -4.0140, -5.5212, -4.0053, -3.5999, -5.2319, -5.9446, -5.6247,
         -4.3006, -5.1588, -4.5104, -3.9837, -5.1592, -4.2998, -6.2257, -5.3139,
         -4.5336, -5.6970, -4.5432, -5.0471, -5.1169, -5.7729, -5.3915, -3.4912,
         -4.6369, -5.2365, -6.0601, -5.3651, -5.0499, -5.1211, -4.7336, -6.7476,
         -5.6456, -5.0389, -4.7289, -5.5121, -2.9521, -4.6852, -5.8838, -5.6147,
         -4.9222, -4.7334, -5.0473, -5.3684, -4.3785, -4.4092, -5.7249, -5.1093,
         -4.9247, -4.0973, -5.2757, -5.0103, -5.3298, -5.2246, -5.2376, -5.0409,
         -5.3682, -4.4103, -5.2739, -5.7753, -5.3121, -5.3229, -4.7973, -5.3419,
         -4.0869, -5.5489, -6.0253, -4.6384, -4.7001, -5.3798, -5.4072, -4.6274,
         -5.2741, -6.1363, -4.6067, -5.3099, -5.0059, -5.1699, -4.9767, -5.2467,
         -5.0942, -4.4623, -5.6662, -4.6116, -5.3887, -4.7994, -4.1454, -2.2531,
         -5.6628, -5.2896, -4.7683, -6.1704, -5.5401, -7.0299, -5.1669, -5.5821,
         -4.7684, -5.2925, -4.6315, -4.8803, -5.1687, -5.2941, -4.9299, -4.8190,
         -5.4344, -4.7551, -4.7198, -5.1019, -5.7492, -6.1550, -5.6996, -4.4132,
         -6.2275, -5.4198, -4.8401, -5.1504, -5.1971, -5.7264, -4.6849, -5.0585,
         -3.8531, -3.6110, -4.3900, -4.0146, -5.6333, -5.7491, -4.2836, -4.9333,
         -5.2104, -4.4378, -4.6586, -6.6317, -5.3482, -4.9060, -4.0507, -4.3850,
         -4.3232, -4.4060, -4.6808, -6.1481, -5.0341, -5.0642, -4.2104, -4.4937,
         -5.8942, -5.7710, -5.0782, -4.6604, -6.3730, -7.0023, -5.4708, -6.7699,
         -4.6094, -5.3579, -6.3511, -5.2445, -3.5320, -4.9982, -5.1565, -5.1640,
         -5.4871, -3.6589, -3.9923, -5.0592, -4.5019, -5.9001, -4.1611, -4.6703,
         -5.1029, -2.9716, -5.3578, -5.1678, -4.0690, -6.2209, -4.3308, -4.6219,
         -5.7228, -3.6582, -4.6460, -5.5739, -4.9900, -5.2182, -5.1610, -4.2914,
         -3.4296, -4.7841, -5.4836, -4.0942, -5.3494, -4.3294, -6.1656, -5.4277,
         -5.9730, -3.6229, -5.0981, -5.5474, -5.6498, -4.2508, -3.6384, -4.9230,
         -5.5150, -3.9948, -5.5786, -4.2315, -4.3435, -5.1986, -4.8257, -4.2392,
         -4.6649, -5.5955, -5.2190, -4.8896, -5.6084, -5.1639, -5.6644, -4.2302,
         -4.6478, -5.2653, -5.4640, -4.5797, -6.1926, -4.3489, -5.2554, -4.2098,
         -5.5954, -4.5482, -4.8853, -5.3986, -4.9047, -4.2353, -4.8603, -5.6714,
         -5.5819, -5.5323, -4.5244, -3.7890, -5.6494, -5.6447, -4.6866, -4.5489,
         -5.4129, -5.2079, -5.7100, -5.2953, -4.0829, -5.3427, -4.6995, -5.5088,
         -5.3798, -5.3735, -4.4773, -5.0795, -5.4732, -5.3964, -5.0798, -4.6644,
         -5.7256, -6.7874, -4.4255, -4.7243, -4.0838, -4.5000, -5.7769, -5.8769,
         -5.8356, -5.6986, -4.8260, -4.9483, -3.8793, -4.4843, -4.7780, -2.8808,
         -5.0341, -5.5861, -4.7410, -4.6428, -6.2251, -4.2188, -3.2221, -5.4640,
         -5.5350, -3.3220, -5.3559, -5.2414, -5.0133, -3.9686, -5.3160, -4.1124]],
       device='cuda:0', grad_fn=<AddmmBackward0>)
预测结果是:Bananaquit
python 复制代码
classes
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
python 复制代码
相关推荐
Komorebi.py3 分钟前
【Linux】-学习笔记05
linux·笔记·学习
不去幼儿园6 分钟前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
Mr_Xuhhh8 分钟前
重生之我在学环境变量
linux·运维·服务器·前端·chrome·算法
想成为高手49912 分钟前
生成式AI在教育技术中的应用:变革与创新
人工智能·aigc
YSGZJJ1 小时前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞1 小时前
COR 损失函数
人工智能·机器学习
盼海1 小时前
排序算法(五)--归并排序
数据结构·算法·排序算法
幽兰的天空1 小时前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
HPC_fac130520678162 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
网易独家音乐人Mike Zhou5 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot