LLM大语言模型应用方案之RAG检索增强生成的实现步骤。

0.我理解的RAG

什么是RAG?

RAG的全称是"检索增强生成模型"(Retrieval-Augmented Generation)。这是一种特别聪明的大语言模型。

RAG是怎么工作的呢?

1.检索:当你问RAG一个问题时,它会先去"图书馆"里找相关的信息。这些"图书馆"里有很多知识和数据。

2.生成 :找到了相关的信息后,RAG会用这些信息来生成一个回答。

为什么RAG很厉害?

有时候,大语言模型可能会不记得所有的细节,但RAG可以通过检索来找到需要的具体信息,然后再回答你的问题。这就像是你问一个问题,RAG先去查了一下百科全书,然后再告诉你答案,所以回答会更准确。

举个例子:

问:"世界上最高的山是什么?"

RAG做了什么:

1.去"图书馆"查找关于最高山的资料。

2.找到了珠穆朗玛峰是世界上最高的山。

3.回答:"世界上最高的山是珠穆朗玛峰,高约8848米。"

这样,通过先检索再生成答案,RAG可以提供准确而有用的回答。

这其中去"图书馆"查找关于高山的资料,我们就可以通过一些方法,将自己拥有的数据进行处理,让大语言模型结合我们问的问题在我们处理后的数据中寻找答案。

1.我的RAG程序的执行流程

  • 模型初始化

    初始化一个大语言模型(LLM)和一个嵌入模型(embedding模型)。

  • 读取文档进行数据分割

    将文档交给代码进行读取,将长文档分割成较小的部分,以便处理。

  • 向量处理

    将分割后的文档数据通过嵌入模型进行向量化处理,生成每个文档段落的向量表示。

    将向量化处理后的数据保存到数据库中。

  • 检索流程

    创建一个包含检索和生成步骤的处理链。

  • RAG链包括以下步骤:

  • 创建检索器

    从向量存储的数据库中创建检索器,在检索时使用余弦距离来衡量向量之间的相似度。 检索器用于检索与输入问题相关的文档内容。

  • 加载提示词模板

    加载提示词模板,用于指导大语言模型生成回答。

  • 格式化检索到的文档

    将检索到的相关文档内容通过格式化函数转换为一个字符串,方便后续处理。

  • 调用处理链处理输入问题

    输入的问题首先通过检索器检索相关文档。

    然后结合提示词模板和格式化后的文档内容,传递给大语言模型。

    大语言模型生成一个准确的回答。

2.效果

在我的提示词模板中, 说明了,如果文档中不存在的内容,只需要回答不知道就可以了。

相关推荐
逝水如流年轻往返染尘17 分钟前
CSS基础学习1
前端·css·学习
运维小杨1 小时前
linux云计算学习第八周,第九周
linux·学习·云计算
nenchoumi31191 小时前
UE5 学习系列(八)材质基础认知
学习·游戏·ue5·机器人·材质
jarenyVO2 小时前
Nginx全面深入学习目录
运维·学习·nginx
jarenyVO4 小时前
RabbitMQ全面学习指南
数据库·学习·rabbitmq
大磕学家ZYX4 小时前
JavaScript学习笔记
javascript·笔记·学习
fengye2071615 小时前
板凳-------Mysql cookbook学习 (十--7)
数据库·学习·mysql
uyeonashi10 小时前
【QT】窗口详解
开发语言·c++·qt·学习
囚生CY11 小时前
【学习笔记】Langchain基础(二)
笔记·学习·langchain
Jay_51511 小时前
C语言环形数组(循环队列)详解:原理、实现与应用
c语言·学习·嵌入式·环形数组