python提取特定格式的数据


Excel Grid Data Converter 知识点总结

本文档总结了 ExcelGridConverter.py 脚本所涉及的关键 Python 知识点。该脚本用于从多个 Excel 文件中提取特定格式的数据并转换为一个新的 Excel 文件。

目录

  1. 导入库
  2. [Pandas 数据处理](#Pandas 数据处理)
  3. [Tkinter GUI 界面](#Tkinter GUI 界面)
  4. 文件操作
  5. 主要函数解释
  6. 总结

导入库

脚本使用了以下主要库:

  • tkinter:用于创建图形用户界面。
  • pandas:用于处理 Excel 数据。
  • os:用于处理文件和目录路径。
python 复制代码
import tkinter as tk
from tkinter import filedialog, messagebox
import pandas as pd
import os

Pandas 数据处理

读取 Excel 文件

使用 pd.read_excel 方法读取 Excel 文件,并使用 sheet_name=None 参数读取所有工作表。添加 index_col=None 参数以确保第一列不会被自动设置为索引列。

python 复制代码
source_df = pd.read_excel(file_path, sheet_name=None, index_col=None)
source_data = source_df['一格一案']

数据提取

通过 Pandas 的 iloc 方法,根据行列索引提取特定数据。

python 复制代码
result_data = {
    '网格编号': source_data.iloc[1, 1],
    '责任段': source_data.iloc[1, 3],
    ...
}

处理合并单元格数据:

python 复制代码
risk_check_path = "\n".join(source_data.iloc[9:19, 1].dropna().astype(str))
result_data['五、风险项点检查路径'] = risk_check_path

创建 DataFrame 并导出为 Excel 文件

将所有提取的数据放入一个 DataFrame 中,并使用 to_excel 方法导出为 Excel 文件。

python 复制代码
result_df = pd.DataFrame(all_data)
result_df.to_excel(output_file_path, index=False)

Tkinter GUI 界面

创建主窗口

使用 tk.Tk 创建主窗口,并设置窗口标题、大小和位置。

python 复制代码
root = tk.Tk()
root.title("Excel 转换工具")
root.geometry(f'{window_width}x{window_height}+{position_right}+{position_top}')

创建按钮和标签

使用 tk.Buttontk.Label 创建按钮和标签,并设置其属性和布局。

python 复制代码
title_label = tk.Label(root, text="Excel 转换工具", font=("Arial", 18))
title_label.pack(pady=20)

select_button = tk.Button(root, text="选择 Excel 文件", command=select_files, font=("Arial", 12))
select_button.pack(pady=10)

文件操作

文件对话框

使用 filedialog.askopenfilenames 打开文件选择对话框,允许用户选择多个 Excel 文件。使用 filedialog.asksaveasfilename 打开文件保存对话框,允许用户选择保存路径。

python 复制代码
file_paths = filedialog.askopenfilenames(filetypes=[("Excel 文件", "*.xlsx")])
output_file_path = filedialog.asksaveasfilename(defaultextension=".xlsx", filetypes=[("Excel 文件", "*.xlsx")])

主要函数解释

transform_to_result_format_specific

该函数从源数据中提取特定字段,并返回一个字典格式的结果数据。

python 复制代码
def transform_to_result_format_specific(source_data, source_file_path):
    risk_check_path = "\n".join(source_data.iloc[9:19, 1].dropna().astype(str))
    result_data = { ... }
    return result_data

select_files

该函数处理文件选择、数据转换和结果保存的主要逻辑。

python 复制代码
def select_files():
    file_paths = filedialog.askopenfilenames(filetypes=[("Excel 文件", "*.xlsx")])
    all_data = []
    for file_path in file_paths:
        source_df = pd.read_excel(file_path, sheet_name=None, index_col=None)
        source_data = source_df['一格一案']
        transformed_data = transform_to_result_format_specific(source_data, file_path)
        all_data.append(transformed_data)
    result_df = pd.DataFrame(all_data)
    output_file_path = filedialog.asksaveasfilename(defaultextension=".xlsx", filetypes=[("Excel 文件", "*.xlsx")])
    if output_file_path:
        result_df.to_excel(output_file_path, index=False)
        messagebox.showinfo("成功", "文件已成功转换并保存。")

总结

通过本脚本,我们学习了如何使用 Pandas 读取和处理 Excel 数据,如何使用 Tkinter 创建图形用户界面,以及如何处理文件对话框和文件操作。这些知识点在日常的 Python 开发中非常实用,特别是涉及数据处理和用户界面的项目中。


相关推荐
WBluuue25 分钟前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
RPA+AI十二工作室1 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
小艳加油2 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
学行库小秘3 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Yn3124 小时前
在 Python 中使用 json 模块的完整指南
开发语言·python·json
秋难降4 小时前
线段树的深度解析(最长递增子序列类解题步骤)
数据结构·python·算法
猿榜4 小时前
Python基础-控制结构
python
Ratten4 小时前
【Python 实战】---- 实现一个可选择、配置操作的批量文件上传工具(三)上传类的实现
python