【PyTorch】【机器学习】图片张量、通道分解&合成和裁剪

一、导入所需库

python 复制代码
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt

二、读取图片

python 复制代码
pic = np.array(Image.open('venice-boat.jpg'))

上述代码解释:先用Image.open()方法读取jpg格式图片,再用np.array()方法将图片转成numpy数组(ndarray)格式。

三、建立张量

图片在PyTorch中以3维张量表示。以下代码将图片转换成张量形式:

python 复制代码
pic_tensor = torch.from_numpy(pic)

打印张量数据内容:

python 复制代码
print(pic_tensor)

输出:

python 复制代码
tensor([[[ 47, 138, 221],  # 每个像素点的RGB颜色值
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 89, 149, 221],
         [ 87, 150, 221],
         [ 86, 149, 220]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 88, 148, 220],
         [ 85, 148, 219],
         [ 85, 148, 219]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 84, 147, 218],
         [ 84, 147, 218],
         [ 83, 146, 217]],

        ...,

四、通过张量对图片进行操作

(注:在以下的各个操作下,还需要用plt.show()语句才能将图片输出到屏幕上。)

1、打印整张图片

python 复制代码
plt.imshow(pic)

2、分RGB通道打印图片

输出通道1:
python 复制代码
plt.imshow(pic_tensor[:, :, 0].numpy())
输出通道2:
python 复制代码
plt.imshow(pic_tensor[:, :, 1].numpy())
输出通道3:
python 复制代码
plt.imshow(pic_tensor[:, :, 2].numpy())


注意: 三通道并不是简单的算术叠加,例如以下代码的输出和原图大相径庭:

python 复制代码
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt


pic_1 = np.array(Image.open('Channel_1.jpg'))
pic_2 = np.array(Image.open('Channel_2.jpg'))
pic_3 = np.array(Image.open('Channel_3.jpg'))

pic_tensor_1 = torch.from_numpy(pic_1)
pic_tensor_2 = torch.from_numpy(pic_2)
pic_tensor_3 = torch.from_numpy(pic_3)

pic_tensor = pic_tensor_1 + pic_tensor_2 + pic_tensor_3
plt.imshow(pic_tensor.numpy())

plt.show()

输出图片:

3、裁剪图片

对图片张量的裁剪在其前2个维度上进行(第3个维度为颜色通道),示例代码如下:

python 复制代码
plt.imshow(pic_tensor[50: 1050, 400: 800, :].numpy())

裁剪结果:

相关推荐
YYXZZ。。1 小时前
PyTorch——搭建小实战和Sequential的使用(7)
人工智能·pytorch·python
四川兔兔1 小时前
pytorch 与 张量的处理
人工智能·pytorch·python
AI蜗牛之家5 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
王上上5 小时前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
殇者知忧5 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
YunTM5 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
舒一笑6 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
SpikeKing7 小时前
Server - 使用 Docker 配置 PyTorch 研发环境
pytorch·docker·llm
丁先生qaq7 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖8 小时前
神经网络-Day45
人工智能·深度学习·神经网络