【PyTorch】【机器学习】图片张量、通道分解&合成和裁剪

一、导入所需库

python 复制代码
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt

二、读取图片

python 复制代码
pic = np.array(Image.open('venice-boat.jpg'))

上述代码解释:先用Image.open()方法读取jpg格式图片,再用np.array()方法将图片转成numpy数组(ndarray)格式。

三、建立张量

图片在PyTorch中以3维张量表示。以下代码将图片转换成张量形式:

python 复制代码
pic_tensor = torch.from_numpy(pic)

打印张量数据内容:

python 复制代码
print(pic_tensor)

输出:

python 复制代码
tensor([[[ 47, 138, 221],  # 每个像素点的RGB颜色值
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 89, 149, 221],
         [ 87, 150, 221],
         [ 86, 149, 220]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 88, 148, 220],
         [ 85, 148, 219],
         [ 85, 148, 219]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 84, 147, 218],
         [ 84, 147, 218],
         [ 83, 146, 217]],

        ...,

四、通过张量对图片进行操作

(注:在以下的各个操作下,还需要用plt.show()语句才能将图片输出到屏幕上。)

1、打印整张图片

python 复制代码
plt.imshow(pic)

2、分RGB通道打印图片

输出通道1:
python 复制代码
plt.imshow(pic_tensor[:, :, 0].numpy())
输出通道2:
python 复制代码
plt.imshow(pic_tensor[:, :, 1].numpy())
输出通道3:
python 复制代码
plt.imshow(pic_tensor[:, :, 2].numpy())


注意: 三通道并不是简单的算术叠加,例如以下代码的输出和原图大相径庭:

python 复制代码
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt


pic_1 = np.array(Image.open('Channel_1.jpg'))
pic_2 = np.array(Image.open('Channel_2.jpg'))
pic_3 = np.array(Image.open('Channel_3.jpg'))

pic_tensor_1 = torch.from_numpy(pic_1)
pic_tensor_2 = torch.from_numpy(pic_2)
pic_tensor_3 = torch.from_numpy(pic_3)

pic_tensor = pic_tensor_1 + pic_tensor_2 + pic_tensor_3
plt.imshow(pic_tensor.numpy())

plt.show()

输出图片:

3、裁剪图片

对图片张量的裁剪在其前2个维度上进行(第3个维度为颜色通道),示例代码如下:

python 复制代码
plt.imshow(pic_tensor[50: 1050, 400: 800, :].numpy())

裁剪结果:

相关推荐
scott1985124 小时前
opencv 畸变系数的说明
人工智能·数码相机·opencv
LS_learner5 小时前
Transmormer从零基础到精通
人工智能
ASD123asfadxv5 小时前
【蜂巢健康监测】基于YOLO的蜂群病虫害识别系统
人工智能·yolo·目标跟踪
说私域5 小时前
基于AI智能名片链动2+1模式服务预约商城系统的社群运营与顾客二次消费吸引策略研究
大数据·人工智能·小程序·开源·流量运营
丝斯20116 小时前
AI学习笔记整理(50)——大模型中的Graph RAG
人工智能·笔记·学习
Coder_Boy_6 小时前
基于SpringAI的在线考试系统-DDD业务领域模块设计思路
java·数据库·人工智能·spring boot·ddd
甜辣uu6 小时前
双算法融合,预测精准度翻倍!机器学习+深度学习驱动冬小麦生长高度与产量智能预测系统
人工智能·小麦·冬小麦·生长高度·植物生长预测·玉米·生长预测
AI街潜水的八角6 小时前
深度学习烟叶病害分割系统3:含训练测试代码、数据集和GUI交互界面
人工智能·深度学习
AI街潜水的八角6 小时前
深度学习烟叶病害分割系统1:数据集说明(含下载链接)
人工智能·深度学习
weixin_446934036 小时前
统计学中“in sample test”与“out of sample”有何区别?
人工智能·python·深度学习·机器学习·计算机视觉