【PyTorch】【机器学习】图片张量、通道分解&合成和裁剪

一、导入所需库

python 复制代码
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt

二、读取图片

python 复制代码
pic = np.array(Image.open('venice-boat.jpg'))

上述代码解释:先用Image.open()方法读取jpg格式图片,再用np.array()方法将图片转成numpy数组(ndarray)格式。

三、建立张量

图片在PyTorch中以3维张量表示。以下代码将图片转换成张量形式:

python 复制代码
pic_tensor = torch.from_numpy(pic)

打印张量数据内容:

python 复制代码
print(pic_tensor)

输出:

python 复制代码
tensor([[[ 47, 138, 221],  # 每个像素点的RGB颜色值
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 89, 149, 221],
         [ 87, 150, 221],
         [ 86, 149, 220]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 88, 148, 220],
         [ 85, 148, 219],
         [ 85, 148, 219]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 84, 147, 218],
         [ 84, 147, 218],
         [ 83, 146, 217]],

        ...,

四、通过张量对图片进行操作

(注:在以下的各个操作下,还需要用plt.show()语句才能将图片输出到屏幕上。)

1、打印整张图片

python 复制代码
plt.imshow(pic)

2、分RGB通道打印图片

输出通道1:
python 复制代码
plt.imshow(pic_tensor[:, :, 0].numpy())
输出通道2:
python 复制代码
plt.imshow(pic_tensor[:, :, 1].numpy())
输出通道3:
python 复制代码
plt.imshow(pic_tensor[:, :, 2].numpy())


注意: 三通道并不是简单的算术叠加,例如以下代码的输出和原图大相径庭:

python 复制代码
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt


pic_1 = np.array(Image.open('Channel_1.jpg'))
pic_2 = np.array(Image.open('Channel_2.jpg'))
pic_3 = np.array(Image.open('Channel_3.jpg'))

pic_tensor_1 = torch.from_numpy(pic_1)
pic_tensor_2 = torch.from_numpy(pic_2)
pic_tensor_3 = torch.from_numpy(pic_3)

pic_tensor = pic_tensor_1 + pic_tensor_2 + pic_tensor_3
plt.imshow(pic_tensor.numpy())

plt.show()

输出图片:

3、裁剪图片

对图片张量的裁剪在其前2个维度上进行(第3个维度为颜色通道),示例代码如下:

python 复制代码
plt.imshow(pic_tensor[50: 1050, 400: 800, :].numpy())

裁剪结果:

相关推荐
YangYang9YangYan10 分钟前
2026年中专计算机专业证书报考指南:高性价比认证与职业路径规划
大数据·人工智能·学习·计算机视觉
DMD16815 分钟前
从仓库到门店:AI如何重构零售供应链的“最后一公里”
人工智能·科技·重构·零售·数字化转型·产业升级·ai技术开发
秃头小饼干16 分钟前
虚拟机性能优化实战技术文章大纲
人工智能·云计算
番茄迷人蛋18 分钟前
欢迎使用AI美食大师项目
人工智能·ai
InfiSight智睿视界19 分钟前
即时零售仓网管理的AI 智能化演进
大数据·人工智能·零售
汽车仪器仪表相关领域23 分钟前
MTX-AL:传统指针美学与现代数字科技的完美融合 - 模拟宽带空燃比计
大数据·人工智能·科技·单元测试·汽车·压力测试·可用性测试
严文文-Chris24 分钟前
【半监督学习常见算法】
学习·算法·机器学习
WHFENGHE29 分钟前
金具线夹测温在线监测装置:电力设备安全运行的核心技术支撑
大数据·人工智能·安全
Coding茶水间35 分钟前
基于深度学习的35种鸟类检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
AI巨人37 分钟前
“PR插件:轻松减少50%素材寻找时间,内置丰富素材,提升视频制作效率
人工智能·音视频·语音识别