【PyTorch】【机器学习】图片张量、通道分解&合成和裁剪

一、导入所需库

python 复制代码
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt

二、读取图片

python 复制代码
pic = np.array(Image.open('venice-boat.jpg'))

上述代码解释:先用Image.open()方法读取jpg格式图片,再用np.array()方法将图片转成numpy数组(ndarray)格式。

三、建立张量

图片在PyTorch中以3维张量表示。以下代码将图片转换成张量形式:

python 复制代码
pic_tensor = torch.from_numpy(pic)

打印张量数据内容:

python 复制代码
print(pic_tensor)

输出:

python 复制代码
tensor([[[ 47, 138, 221],  # 每个像素点的RGB颜色值
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 89, 149, 221],
         [ 87, 150, 221],
         [ 86, 149, 220]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 88, 148, 220],
         [ 85, 148, 219],
         [ 85, 148, 219]],

        [[ 47, 138, 221],
         [ 49, 138, 220],
         [ 50, 139, 221],
         ...,
         [ 84, 147, 218],
         [ 84, 147, 218],
         [ 83, 146, 217]],

        ...,

四、通过张量对图片进行操作

(注:在以下的各个操作下,还需要用plt.show()语句才能将图片输出到屏幕上。)

1、打印整张图片

python 复制代码
plt.imshow(pic)

2、分RGB通道打印图片

输出通道1:
python 复制代码
plt.imshow(pic_tensor[:, :, 0].numpy())
输出通道2:
python 复制代码
plt.imshow(pic_tensor[:, :, 1].numpy())
输出通道3:
python 复制代码
plt.imshow(pic_tensor[:, :, 2].numpy())


注意: 三通道并不是简单的算术叠加,例如以下代码的输出和原图大相径庭:

python 复制代码
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt


pic_1 = np.array(Image.open('Channel_1.jpg'))
pic_2 = np.array(Image.open('Channel_2.jpg'))
pic_3 = np.array(Image.open('Channel_3.jpg'))

pic_tensor_1 = torch.from_numpy(pic_1)
pic_tensor_2 = torch.from_numpy(pic_2)
pic_tensor_3 = torch.from_numpy(pic_3)

pic_tensor = pic_tensor_1 + pic_tensor_2 + pic_tensor_3
plt.imshow(pic_tensor.numpy())

plt.show()

输出图片:

3、裁剪图片

对图片张量的裁剪在其前2个维度上进行(第3个维度为颜色通道),示例代码如下:

python 复制代码
plt.imshow(pic_tensor[50: 1050, 400: 800, :].numpy())

裁剪结果:

相关推荐
AI量化投资实验室33 分钟前
deap系统重构,再新增一个新的因子,年化39.1%,卡玛提升至2.76(附python代码)
大数据·人工智能·重构
张登杰踩42 分钟前
如何快速下载Huggingface上的超大模型,不用梯子,以Deepseek-R1为例子
人工智能
AIGC大时代42 分钟前
分享14分数据分析相关ChatGPT提示词
人工智能·chatgpt·数据分析
TMT星球1 小时前
生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
大数据·人工智能·科技
AI视觉网奇2 小时前
图生3d算法学习笔记
人工智能
小锋学长生活大爆炸2 小时前
【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式
人工智能·pytorch·深度学习·图神经网络·gnn·dgl
机械心2 小时前
pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
pytorch·python·深度学习
佛州小李哥2 小时前
在亚马逊云科技上用AI提示词优化功能写出漂亮提示词(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
鸭鸭鸭进京赶烤2 小时前
计算机工程:解锁未来科技之门!
人工智能·科技·opencv·ai·机器人·硬件工程·软件工程
ModelWhale2 小时前
十年筑梦,再创鲸彩!庆祝和鲸科技十周年
人工智能·科技