动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广

6 图片增广

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import torch 
import torchvision
from d2l import torch as d2l
from torch import nn 
from PIL import Image
import liliPytorch as lp
from torch.utils.data import Dataset, DataLoader

plt.figure('cat')
img = Image.open('../limuPytorch/images/cat.jpg')
plt.imshow(img)

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    """
    img: 输入的图像。
    aug: 增强函数,接受一个图像作为输入并返回一个增强后的图像。
    num_rows: 显示增强后图像的行数,默认值为2。
    num_cols: 显示增强后图像的列数,默认值为4。
    scale: 显示图像的缩放比例,默认值为1.5。
    """
    # 应用增强函数 aug 到输入图像 img 上 num_rows * num_cols 次
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    # 将增强后的图像列表 Y 以 num_rows 行和 num_cols 列的网格形式显示,缩放比例为 scale。
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
    
# 图像各有50%的几率翻转
# 左右翻转,通常不会改变对象的类别。这是最早和最广泛使用的图像增广方法之一。
apply(img,torchvision.transforms.RandomHorizontalFlip())

# 上下翻转,不如左右图像翻转那样常用。
apply(img,torchvision.transforms.RandomVerticalFlip())

# 随机裁减
# (200,200)是图片的大小,scale表示随机裁减为原来的比例,ratio是长宽比
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200,200),
    scale=(0.1,1),
    ratio=(0.5,2), 
)

apply(img,shape_aug)

# 改变颜色
# 四个方面:亮度、对比度、饱和度和色调
# 亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
# 亮度
# 随机值为原始图像的50%到150%之间。
apply(img, 
      torchvision.transforms.ColorJitter(
        brightness=0.5, 
        contrast=0, 
        saturation=0, 
        hue=0
        )
)

#色调
apply(img, 
      torchvision.transforms.ColorJitter(
        brightness=0, 
        contrast=0, 
        saturation=0, 
        hue=0.5
        )
)

#同时随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, 
    contrast=0.5, 
    saturation=0.5, 
    hue=0.5
    )
apply(img, color_aug)

# 结合多种图像增广方法
augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
# plt.show()

# 使用图像增广进行训练
all_images = torchvision.datasets.CIFAR10(train=True, root="../data",download=True)

#展示前32个训练图像
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8)
plt.show()

# 使用ToTensor实例将一批图像转换为深度学习框架所要求的格式,
# 即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。
train_augs = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
     torchvision.transforms.ToTensor()])

#测试
def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
                                           transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                    shuffle=is_train, num_workers=4)
    return dataloader

net = d2l.resnet18(10, 3)
batch_size = 256
lr=0.001
num_epochs = 10
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)

lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()
相关推荐
巫婆理发22210 小时前
循环序列模型
深度学习·神经网络
春日见11 小时前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
DeniuHe12 小时前
torch.distribution函数详解
pytorch
OpenBayes14 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
退休钓鱼选手15 小时前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
DeniuHe15 小时前
用 PyTorch 库创建了一个随机张量,并演示了多种张量取整和分解操作
pytorch
哥布林学者16 小时前
吴恩达深度学习课程:深度学习入门笔记全集目录
深度学习·ai
xsc-xyc16 小时前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
AI周红伟16 小时前
周红伟: DeepSeek大模型微调和部署实战:大模型全解析、部署及大模型训练微调代码实战
人工智能·深度学习
JicasdC123asd17 小时前
【深度学习实战】基于Mask-RCNN和HRNetV2P的腰果智能分级系统_1
人工智能·深度学习