动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广

6 图片增广

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import torch 
import torchvision
from d2l import torch as d2l
from torch import nn 
from PIL import Image
import liliPytorch as lp
from torch.utils.data import Dataset, DataLoader

plt.figure('cat')
img = Image.open('../limuPytorch/images/cat.jpg')
plt.imshow(img)

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    """
    img: 输入的图像。
    aug: 增强函数,接受一个图像作为输入并返回一个增强后的图像。
    num_rows: 显示增强后图像的行数,默认值为2。
    num_cols: 显示增强后图像的列数,默认值为4。
    scale: 显示图像的缩放比例,默认值为1.5。
    """
    # 应用增强函数 aug 到输入图像 img 上 num_rows * num_cols 次
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    # 将增强后的图像列表 Y 以 num_rows 行和 num_cols 列的网格形式显示,缩放比例为 scale。
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
    
# 图像各有50%的几率翻转
# 左右翻转,通常不会改变对象的类别。这是最早和最广泛使用的图像增广方法之一。
apply(img,torchvision.transforms.RandomHorizontalFlip())

# 上下翻转,不如左右图像翻转那样常用。
apply(img,torchvision.transforms.RandomVerticalFlip())

# 随机裁减
# (200,200)是图片的大小,scale表示随机裁减为原来的比例,ratio是长宽比
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200,200),
    scale=(0.1,1),
    ratio=(0.5,2), 
)

apply(img,shape_aug)

# 改变颜色
# 四个方面:亮度、对比度、饱和度和色调
# 亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
# 亮度
# 随机值为原始图像的50%到150%之间。
apply(img, 
      torchvision.transforms.ColorJitter(
        brightness=0.5, 
        contrast=0, 
        saturation=0, 
        hue=0
        )
)

#色调
apply(img, 
      torchvision.transforms.ColorJitter(
        brightness=0, 
        contrast=0, 
        saturation=0, 
        hue=0.5
        )
)

#同时随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, 
    contrast=0.5, 
    saturation=0.5, 
    hue=0.5
    )
apply(img, color_aug)

# 结合多种图像增广方法
augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
# plt.show()

# 使用图像增广进行训练
all_images = torchvision.datasets.CIFAR10(train=True, root="../data",download=True)

#展示前32个训练图像
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8)
plt.show()

# 使用ToTensor实例将一批图像转换为深度学习框架所要求的格式,
# 即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。
train_augs = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
     torchvision.transforms.ToTensor()])

#测试
def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
                                           transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                    shuffle=is_train, num_workers=4)
    return dataloader

net = d2l.resnet18(10, 3)
batch_size = 256
lr=0.001
num_epochs = 10
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)

lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()
相关推荐
@Mr_LiuYang4 分钟前
深度学习PyTorch之13种模型精度评估公式及调用方法
人工智能·pytorch·深度学习·模型评估·精度指标·模型精度
幻风_huanfeng9 分钟前
每天五分钟深度学习框架PyTorch:使用残差块快速搭建ResNet网络
人工智能·pytorch·深度学习·神经网络·机器学习·resnet
jndingxin37 分钟前
OpenCV计算摄影学(15)无缝克隆(Seamless Cloning)调整图像颜色的函数colorChange()
人工智能·opencv·计算机视觉
kimi-22239 分钟前
plt和cv2有不同的图像表示方式和颜色通道顺序
人工智能·opencv·计算机视觉
春末的南方城市44 分钟前
阿里发布新开源视频生成模型Wan-Video,支持文生图和图生图,最低6G就能跑,ComFyUI可用!
人工智能·计算机视觉·自然语言处理·开源·aigc·音视频
ZHOU_WUYI1 小时前
旋转位置编码 (2)
pytorch·python·深度学习
qq_273900231 小时前
AF3 squeeze_features函数解读
人工智能·pytorch·深度学习·生物信息学
ZhuBin3652 小时前
推测gpt4o视觉皮层建立的过程
人工智能·深度学习·计算机视觉
大数据追光猿2 小时前
Qwen 模型与 LlamaFactory 结合训练详细步骤教程
大数据·人工智能·深度学习·计算机视觉·语言模型
何仙鸟2 小时前
深度学习网格搜索实战
人工智能·深度学习