动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广

6 图片增广

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import torch 
import torchvision
from d2l import torch as d2l
from torch import nn 
from PIL import Image
import liliPytorch as lp
from torch.utils.data import Dataset, DataLoader

plt.figure('cat')
img = Image.open('../limuPytorch/images/cat.jpg')
plt.imshow(img)

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    """
    img: 输入的图像。
    aug: 增强函数,接受一个图像作为输入并返回一个增强后的图像。
    num_rows: 显示增强后图像的行数,默认值为2。
    num_cols: 显示增强后图像的列数,默认值为4。
    scale: 显示图像的缩放比例,默认值为1.5。
    """
    # 应用增强函数 aug 到输入图像 img 上 num_rows * num_cols 次
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    # 将增强后的图像列表 Y 以 num_rows 行和 num_cols 列的网格形式显示,缩放比例为 scale。
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
    
# 图像各有50%的几率翻转
# 左右翻转,通常不会改变对象的类别。这是最早和最广泛使用的图像增广方法之一。
apply(img,torchvision.transforms.RandomHorizontalFlip())

# 上下翻转,不如左右图像翻转那样常用。
apply(img,torchvision.transforms.RandomVerticalFlip())

# 随机裁减
# (200,200)是图片的大小,scale表示随机裁减为原来的比例,ratio是长宽比
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200,200),
    scale=(0.1,1),
    ratio=(0.5,2), 
)

apply(img,shape_aug)

# 改变颜色
# 四个方面:亮度、对比度、饱和度和色调
# 亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
# 亮度
# 随机值为原始图像的50%到150%之间。
apply(img, 
      torchvision.transforms.ColorJitter(
        brightness=0.5, 
        contrast=0, 
        saturation=0, 
        hue=0
        )
)

#色调
apply(img, 
      torchvision.transforms.ColorJitter(
        brightness=0, 
        contrast=0, 
        saturation=0, 
        hue=0.5
        )
)

#同时随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, 
    contrast=0.5, 
    saturation=0.5, 
    hue=0.5
    )
apply(img, color_aug)

# 结合多种图像增广方法
augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
# plt.show()

# 使用图像增广进行训练
all_images = torchvision.datasets.CIFAR10(train=True, root="../data",download=True)

#展示前32个训练图像
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8)
plt.show()

# 使用ToTensor实例将一批图像转换为深度学习框架所要求的格式,
# 即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。
train_augs = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
     torchvision.transforms.ToTensor()])

#测试
def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
                                           transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                    shuffle=is_train, num_workers=4)
    return dataloader

net = d2l.resnet18(10, 3)
batch_size = 256
lr=0.001
num_epochs = 10
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)

lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()
相关推荐
wanzhong23331 小时前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
Hcoco_me1 小时前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
_codemonster2 小时前
AI大模型入门到实战系列--使用Pytorch实现transformer文本分类
人工智能·pytorch·transformer
我不爱机器学习2 小时前
使用 PyTorch 进行分布式计算
pytorch
是店小二呀3 小时前
在 AtomGit 昇腾 Atlas 800T上解锁 SGLang:零成本打造高性能推理服务
人工智能·pytorch·深度学习·npu
万事可爱^3 小时前
GitCode+昇腾部署Rnj-1模型实践教程
人工智能·深度学习·语言模型·gitcode·本地部署·昇腾npu
高洁013 小时前
图神经网络初探(2)
人工智能·深度学习·算法·机器学习·transformer
祝余Eleanor3 小时前
Day 51 神经网络调参指南
深度学习·神经网络·机器学习
算法熔炉3 小时前
深度学习面试八股文(4)—— transformer专题
深度学习·面试·transformer
软件算法开发4 小时前
基于山羚羊优化的LSTM深度学习网络模型(MGO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·一维时间序列预测·山羚羊优化·mgo-lstm