动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广

6 图片增广

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import torch 
import torchvision
from d2l import torch as d2l
from torch import nn 
from PIL import Image
import liliPytorch as lp
from torch.utils.data import Dataset, DataLoader

plt.figure('cat')
img = Image.open('../limuPytorch/images/cat.jpg')
plt.imshow(img)

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    """
    img: 输入的图像。
    aug: 增强函数,接受一个图像作为输入并返回一个增强后的图像。
    num_rows: 显示增强后图像的行数,默认值为2。
    num_cols: 显示增强后图像的列数,默认值为4。
    scale: 显示图像的缩放比例,默认值为1.5。
    """
    # 应用增强函数 aug 到输入图像 img 上 num_rows * num_cols 次
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    # 将增强后的图像列表 Y 以 num_rows 行和 num_cols 列的网格形式显示,缩放比例为 scale。
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
    
# 图像各有50%的几率翻转
# 左右翻转,通常不会改变对象的类别。这是最早和最广泛使用的图像增广方法之一。
apply(img,torchvision.transforms.RandomHorizontalFlip())

# 上下翻转,不如左右图像翻转那样常用。
apply(img,torchvision.transforms.RandomVerticalFlip())

# 随机裁减
# (200,200)是图片的大小,scale表示随机裁减为原来的比例,ratio是长宽比
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200,200),
    scale=(0.1,1),
    ratio=(0.5,2), 
)

apply(img,shape_aug)

# 改变颜色
# 四个方面:亮度、对比度、饱和度和色调
# 亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
# 亮度
# 随机值为原始图像的50%到150%之间。
apply(img, 
      torchvision.transforms.ColorJitter(
        brightness=0.5, 
        contrast=0, 
        saturation=0, 
        hue=0
        )
)

#色调
apply(img, 
      torchvision.transforms.ColorJitter(
        brightness=0, 
        contrast=0, 
        saturation=0, 
        hue=0.5
        )
)

#同时随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, 
    contrast=0.5, 
    saturation=0.5, 
    hue=0.5
    )
apply(img, color_aug)

# 结合多种图像增广方法
augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
# plt.show()

# 使用图像增广进行训练
all_images = torchvision.datasets.CIFAR10(train=True, root="../data",download=True)

#展示前32个训练图像
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8)
plt.show()

# 使用ToTensor实例将一批图像转换为深度学习框架所要求的格式,
# 即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。
train_augs = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
     torchvision.transforms.ToTensor()])

#测试
def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
                                           transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                    shuffle=is_train, num_workers=4)
    return dataloader

net = d2l.resnet18(10, 3)
batch_size = 256
lr=0.001
num_epochs = 10
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)

lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()
相关推荐
Coovally AI模型快速验证2 小时前
IDEA研究院发布Rex-Omni:3B参数MLLM重塑目标检测,零样本性能超越DINO
人工智能·深度学习·yolo·目标检测·计算机视觉·目标跟踪
shuououo5 小时前
YOLOv4 核心内容笔记
人工智能·计算机视觉·目标跟踪
deephub8 小时前
深入BERT内核:用数学解密掩码语言模型的工作原理
人工智能·深度学习·语言模型·bert·transformer
PKNLP8 小时前
BERT系列模型
人工智能·深度学习·bert
IT_Octopus10 小时前
triton backend 模式docker 部署 pytorch gpu模型 镜像选择
pytorch·docker·triton·模型推理
格林威10 小时前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造
来酱何人11 小时前
实时NLP数据处理:流数据的清洗、特征提取与模型推理适配
人工智能·深度学习·分类·nlp·bert
Theodore_102212 小时前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归
Blossom.11812 小时前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
tangchen。12 小时前
YOLOv3 :目标检测的经典融合与创新
人工智能·计算机视觉·目标跟踪