常微分方程算法之编程示例五(阿当姆斯法)

目录

一、研究问题

二、C++代码

三、计算结果


一、研究问题

本节我们采用阿当姆斯法(Adams法)求解算例。

阿当姆斯法的原理及推导请参考:

常微分方程算法之阿当姆斯法(Adams法)_四步四阶adams显格式;三步四阶adams隐格式;四阶adams预估-校正格式-CSDN博客https://blog.csdn.net/L_peanut/article/details/137378532 研究问题依然为

取步长为0.1。已知精确解为

二、C++代码

这里我们使用四阶阿当姆斯显格式四阶阿当姆斯预估-校正格式进行求解,如下:


cpp 复制代码
#include <cmath>
#include <stdlib.h>
#include <stdio.h>


int main(int argc, char *argv[])
{
        int i,N;
        double a,b,h,k1,k2,k3,k4,upredict;
        double *x,*y,*u;
        double f(double x, double y);
        double exact(double x);

        a=0.0;
        b=1.0;
        N=10;
        h=(b-a)/N;

        x=(double *)malloc(sizeof(double)*(N+1));
        y=(double *)malloc(sizeof(double)*(N+1));
        u=(double *)malloc(sizeof(double)*(N+1));
        for(i=0;i<=N;i++)
                x[i]=a+i*h;
        y[0]=1.0;
        u[0]=1.0;

        for(i=0;i<=2;i++)  //用龙格-库塔法求解y1,y2,y3作为初始值
        {
                k1=h*f(x[i],y[i]);
                k2=h*f(x[i]+0.5*h,y[i]+0.5*k1);
                k3=h*f(x[i]+0.5*h,y[i]+0.5*k2);
                k4=h*f(x[i]+h,y[i]+k3);
                y[i+1]=y[i]+(k1+2*k2+2*k3+k4)/6.0;
                u[i+1]=y[i+1];
        }

        for(i=3;i<N;i++)
        {
                //四阶阿当姆斯显格式
                y[i+1]=y[i]+(55*f(x[i],y[i])-59*f(x[i-1],y[i-1])+37*f(x[i-2],y[i-2])-9*f(x[i-3],y[i-3]))*h/24.0;
                //四阶阿当姆斯预估-校正格式
                upredict=u[i]+(55*f(x[i],u[i])-59*f(x[i-1],u[i-1])+37*f(x[i-2],u[i-2])-9*f(x[i-3],u[i-3]))*h/24.0;
                u[i+1]=u[i]+(9*f(x[i+1],upredict)+19*f(x[i],u[i])-5*f(x[i-1],u[i-1])+f(x[i-2],u[i-2]))*h/24.0;
        }

        for(i=0;i<=N;i++)
                printf("x=%.2f, 显示解=%f, 预估-校正解=%f, exact=%f.\n",x[i],y[i],u[i],exact(x[i]));

        free(x);free(y);free(u);

        return 0;
}



double f(double x, double y)
{
        return y-2*x/y;
}
double exact(double x)
{
        return sqrt(1+2.0*x);
}
                                            

三、计算结果

bash 复制代码
x=0.00, 显示解=1.000000, 预估-校正解=1.000000, exact=1.000000.
x=0.10, 显示解=1.095446, 预估-校正解=1.095446, exact=1.095445.
x=0.20, 显示解=1.183217, 预估-校正解=1.183217, exact=1.183216.
x=0.30, 显示解=1.264912, 预估-校正解=1.264912, exact=1.264911.
x=0.40, 显示解=1.341552, 预估-校正解=1.341641, exact=1.341641.
x=0.50, 显示解=1.414046, 预估-校正解=1.414214, exact=1.414214.
x=0.60, 显示解=1.483019, 预估-校正解=1.483240, exact=1.483240.
x=0.70, 显示解=1.548919, 预估-校正解=1.549193, exact=1.549193.
x=0.80, 显示解=1.612116, 预估-校正解=1.612452, exact=1.612452.
x=0.90, 显示解=1.672917, 预估-校正解=1.673320, exact=1.673320.
x=1.00, 显示解=1.731570, 预估-校正解=1.732051, exact=1.732051.

从计算结果可知,预估-校正法求解结果有效数字更多,结果更为精确,优于显示法。

相关推荐
sprintzer18 分钟前
1.6-1.15力扣数学刷题
算法·leetcode·职场和发展
jiang_bluetooth20 分钟前
channel sounding基于探测序列的时延和相位差算法
算法·蓝牙测距·channel sound·gfsk·蓝牙6.0
玖釉-20 分钟前
[Vulkan 学习之路] 16 - 最终章:渲染循环与同步 (Rendering & Presentation)
c++·windows·图形渲染
狗狗学不会29 分钟前
Pybind11 封装 RK3588 全流程服务:Python 写逻辑,C++ 跑并发,性能起飞!
c++·人工智能·python·目标检测
DYS_房东的猫35 分钟前
《 C++ 零基础入门教程》第10章:C++20 核心特性 —— 编写更现代、更优雅的 C++
java·c++·c++20
地平线开发者36 分钟前
征程 6 算法工具链 | PTQ 深度使用指南
算法·自动驾驶
Howrun7771 小时前
虚幻引擎_AController_APlayerController_AAIController
开发语言·c++·游戏引擎·虚幻
小林rr1 小时前
深入探索 C++:现代特性、工程实践与性能优化全解
java·c++·性能优化
Xの哲學1 小时前
Linux 软中断深度剖析: 从设计思想到实战调试
linux·网络·算法·架构·边缘计算
暴风游侠1 小时前
如何进行科学的分类
笔记·算法·分类