常微分方程算法之编程示例五(阿当姆斯法)

目录

一、研究问题

二、C++代码

三、计算结果


一、研究问题

本节我们采用阿当姆斯法(Adams法)求解算例。

阿当姆斯法的原理及推导请参考:

常微分方程算法之阿当姆斯法(Adams法)_四步四阶adams显格式;三步四阶adams隐格式;四阶adams预估-校正格式-CSDN博客https://blog.csdn.net/L_peanut/article/details/137378532 研究问题依然为

取步长为0.1。已知精确解为

二、C++代码

这里我们使用四阶阿当姆斯显格式四阶阿当姆斯预估-校正格式进行求解,如下:


cpp 复制代码
#include <cmath>
#include <stdlib.h>
#include <stdio.h>


int main(int argc, char *argv[])
{
        int i,N;
        double a,b,h,k1,k2,k3,k4,upredict;
        double *x,*y,*u;
        double f(double x, double y);
        double exact(double x);

        a=0.0;
        b=1.0;
        N=10;
        h=(b-a)/N;

        x=(double *)malloc(sizeof(double)*(N+1));
        y=(double *)malloc(sizeof(double)*(N+1));
        u=(double *)malloc(sizeof(double)*(N+1));
        for(i=0;i<=N;i++)
                x[i]=a+i*h;
        y[0]=1.0;
        u[0]=1.0;

        for(i=0;i<=2;i++)  //用龙格-库塔法求解y1,y2,y3作为初始值
        {
                k1=h*f(x[i],y[i]);
                k2=h*f(x[i]+0.5*h,y[i]+0.5*k1);
                k3=h*f(x[i]+0.5*h,y[i]+0.5*k2);
                k4=h*f(x[i]+h,y[i]+k3);
                y[i+1]=y[i]+(k1+2*k2+2*k3+k4)/6.0;
                u[i+1]=y[i+1];
        }

        for(i=3;i<N;i++)
        {
                //四阶阿当姆斯显格式
                y[i+1]=y[i]+(55*f(x[i],y[i])-59*f(x[i-1],y[i-1])+37*f(x[i-2],y[i-2])-9*f(x[i-3],y[i-3]))*h/24.0;
                //四阶阿当姆斯预估-校正格式
                upredict=u[i]+(55*f(x[i],u[i])-59*f(x[i-1],u[i-1])+37*f(x[i-2],u[i-2])-9*f(x[i-3],u[i-3]))*h/24.0;
                u[i+1]=u[i]+(9*f(x[i+1],upredict)+19*f(x[i],u[i])-5*f(x[i-1],u[i-1])+f(x[i-2],u[i-2]))*h/24.0;
        }

        for(i=0;i<=N;i++)
                printf("x=%.2f, 显示解=%f, 预估-校正解=%f, exact=%f.\n",x[i],y[i],u[i],exact(x[i]));

        free(x);free(y);free(u);

        return 0;
}



double f(double x, double y)
{
        return y-2*x/y;
}
double exact(double x)
{
        return sqrt(1+2.0*x);
}
                                            

三、计算结果

bash 复制代码
x=0.00, 显示解=1.000000, 预估-校正解=1.000000, exact=1.000000.
x=0.10, 显示解=1.095446, 预估-校正解=1.095446, exact=1.095445.
x=0.20, 显示解=1.183217, 预估-校正解=1.183217, exact=1.183216.
x=0.30, 显示解=1.264912, 预估-校正解=1.264912, exact=1.264911.
x=0.40, 显示解=1.341552, 预估-校正解=1.341641, exact=1.341641.
x=0.50, 显示解=1.414046, 预估-校正解=1.414214, exact=1.414214.
x=0.60, 显示解=1.483019, 预估-校正解=1.483240, exact=1.483240.
x=0.70, 显示解=1.548919, 预估-校正解=1.549193, exact=1.549193.
x=0.80, 显示解=1.612116, 预估-校正解=1.612452, exact=1.612452.
x=0.90, 显示解=1.672917, 预估-校正解=1.673320, exact=1.673320.
x=1.00, 显示解=1.731570, 预估-校正解=1.732051, exact=1.732051.

从计算结果可知,预估-校正法求解结果有效数字更多,结果更为精确,优于显示法。

相关推荐
渡我白衣1 天前
并行的野心与现实——彻底拆解 C++ 标准并行算法(<execution>)的模型、陷阱与性能真相
java·开发语言·网络·c++·人工智能·windows·vscode
m0_639397291 天前
代码随想录算法训练营第三十九天|198.打家劫舍,213.打家劫舍II,337.打家劫舍III
算法
heisd_11 天前
KNN 算法和 K means算法和 Q-Learning 算法(简单的理解)
算法
闻缺陷则喜何志丹1 天前
【几何】二维矢量叉乘、正弦定理、三维叉乘及鞋带公式(高斯面积公式)
c++·数学·正弦定理·鞋带公式·矢量叉乘·简单多边形面积
liu****1 天前
15.自定义类型:联合和枚举
数据结构·c++·剪枝
C灿灿数模1 天前
2025未来杯数学建模A题B题思路模型代码论文(开赛后持续更新)
数学建模
冉佳驹1 天前
C++ ——— 动态内存管理和泛型编程的核心机制
c++·delete·模板·new·operator new·operator delete·定位 new
程序猿编码1 天前
恶意软件分析工具:ELF二进制文件的感染与分析原理(C/C++代码实现)
c语言·c++·网络安全·信息安全·elf·shellcode
资深低代码开发平台专家1 天前
通用编程时代正在向专用化分层演进
java·大数据·c语言·c++·python
Wild_Pointer.1 天前
项目实战:使用QCustomPlot实现多窗口绘制数据(支持GPU加速)
c++·qt·gpu算力