NLP基础知识

自然语言处理 (Natural Language Processing, NLP) 是计算机科学与人工智能的一个分支,致力于研究和应用让计算机能够理解、解释、生成和处理人类语言的技术。NLP 结合了语言学、计算机科学、人工智能等多领域的知识,应用广泛,包括机器翻译、语音识别、文本分析、情感分析等。

核心任务和技术

  1. 文本预处理

    • 分词 (Tokenization):将文本分割成词或子词单位。市面上大模型按Token计费,就是按照这个分词为单位。
    • 词形还原 (Lemmatization) 与词干提取 (Stemming):将单词还原到其基本形式。
    • 停用词过滤 (Stop Words Removal):去除常见但无意义的词(如 "and", "the" 等)。
    • 词向量化 (Word Vectorization):将文本表示成计算机可处理的数值形式,如词袋模型 (Bag-of-Words, BoW)、词嵌入 (Word Embeddings) 等。
  2. 语言模型

    • n-gram 模型:基于固定长度的词序列(n-gram)预测词的概率。
    • 神经网络语言模型:使用深度学习模型,如 RNN、LSTM、Transformer 等来捕捉语言的复杂模式。
    • 预训练语言模型:如 BERT、GPT 等,通过在大规模文本数据上预训练,然后在特定任务上进行微调。
  3. 文本分类

    • 情感分析 (Sentiment Analysis):识别和分类文本中的情感,如正面、负面、中性。
    • 主题建模 (Topic Modeling):发现文档集中隐藏的主题,例如 LDA (Latent Dirichlet Allocation)。
    • 垃圾邮件检测:判断邮件是否为垃圾邮件。
  4. 信息提取

    • 命名实体识别 (Named Entity Recognition, NER):识别文本中的实体,如人名、地名、组织等。
    • 关系抽取:识别实体间的关系。
    • 事件抽取:从文本中提取特定事件的信息。
  5. 机器翻译

    • 统计机器翻译 (Statistical Machine Translation, SMT):基于统计模型的翻译方法。
    • 神经机器翻译 (Neural Machine Translation, NMT):基于神经网络的翻译方法,如 Seq2Seq、Transformer。
  6. 生成任务

    • 文本生成:如文本摘要、自动写作、对话系统。
    • 图像描述生成:根据图像生成描述性文字。

常用工具和库

  • NLTK (Natural Language Toolkit):Python 中的经典 NLP 工具包,提供丰富的文本处理功能。
  • spaCy:一个快速、工业级的 NLP 库,支持许多高级 NLP 任务。
  • Stanford NLP:提供多种自然语言处理工具,包括分词、POS 标注、NER 等。
  • Hugging Face Transformers:一个流行的库,提供多种预训练的语言模型,如 BERT、GPT 等。

深度学习与 NLP

近年来,深度学习在 NLP 中的应用大大提升了任务的表现,特别是基于 Transformer 的模型(如 BERT、GPT)表现尤为突出。这些模型通过在大规模文本数据上进行预训练,能够捕捉语言的复杂模式,并在下游任务中通过微调实现卓越的性能。

应用场景

  • 搜索引擎:改进查询理解和结果排序。
  • 智能助手:如 Siri、某某音响、大语言模型等,理解和响应用户的语音命令。
  • 社交媒体分析:情感分析、话题检测、舆情监控等。
  • 客户服务:自动客服机器人、邮件分类和回复。
  • 医疗:电子病历分析、医学文献摘要等。

未来趋势

NLP 的未来发展可能包括:

  • 多模态学习:结合文本、图像、视频等多种数据形式,提升理解和生成能力。
  • 跨语言学习:开发能够理解和处理多种语言的模型,减少语言障碍。
  • 情感与情绪识别:更准确地捕捉和理解文本中的情感和情绪。
  • 可解释性与公平性:确保 NLP 模型的决策过程透明,并避免偏见和歧视。

未来可期,一起见证!🚀

相关推荐
IT_陈寒2 分钟前
SpringBoot性能飞跃:5个关键优化让你的应用吞吐量提升300%
前端·人工智能·后端
聚客AI1 小时前
系统提示的“消亡”?上下文工程正在重新定义人机交互规则
图像处理·人工智能·pytorch·语言模型·自然语言处理·chatgpt·gpt-3
红纸2811 小时前
Subword算法之WordPiece、Unigram与SentencePiece
人工智能·python·深度学习·神经网络·算法·机器学习·自然语言处理
golang学习记1 小时前
Crush:新一代基于Go语言构建的开源 AI 编程CLI工具
人工智能
一车小面包1 小时前
Subword-Based Tokenization策略之BPE与BBPE
人工智能·自然语言处理
红纸2811 小时前
Subword分词方法的BPE与BBPE
人工智能·python·深度学习·神经网络·自然语言处理
zy_destiny1 小时前
【工业场景】用YOLOv8实现反光衣识别
人工智能·python·yolo·机器学习·计算机视觉
zhangjipinggom1 小时前
QwenVL - 202310版-论文阅读
人工智能·深度学习
PKNLP2 小时前
深度学习之循环神经网络RNN
人工智能·pytorch·rnn·深度学习
大模型真好玩2 小时前
低代码Agent开发框架使用指南(三)—小白5分钟利用Coze轻松构建智能体
人工智能·agent·coze