机器学习Python代码实战(二)分类算法:k-最近邻

一.k-最近邻算法步骤

1.选择适当的k值。它表示在预测新的数据点时要考虑的邻居数量。

2.计算距离。计算未知点与其他所有点之间的距离。常用的距离计算方法主要有欧氏距离,曼哈顿距离等。

3.选择邻居。在训练集中选择与要预测的数据点距离最近的k个邻居。

4.预测响应。统计这k个邻居中各类别的数量,并将要预测的数据点预测为这k个邻居中数量最多的类别。

下面以使用K-最近邻算法预测糖尿病(不需要特征标准化)为例说明k-最近邻算法的使用。

二.导入库和数据集

其中变量的中文含义如下:

Pregnancies:怀孕次数

Glucose:葡萄糖测试值

BloodPressure:血压

SkinThickness:皮肤厚度

Insulin:胰岛素

BMI:身体质量指数

Predigree:糖尿病遗传函数

Age:年龄

Outcome:糖尿病标签(即预测结果)

三.数据清洗

可以看到在上一步中某些列均出现了异常值0,此时需要进行数据清洗把异常值先替换为NaN,然后用该列的平均值填充。

四.划分测试集和训练集

先获取x,y如下。

然后进行训练集和测试集的划分,依旧是训练集占80%,测试集占20%。打印x的测试集如下。

五.模型训练

由于本数据集的自变量之间的数量级差别不是很大,故不需要使用特征标准化。

先导入k-最近邻分类器,再开始在训练集上训练模型

六.预测结果并输出混淆矩阵

混淆矩阵可视化如下:

采用准确率(Accurancy),精确率(precision),召回率(Recall),F1分数(F1 score)来评估模型。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 70% 之间,说明模型有一定的预测能力,但效果并不是特别好。

因此,我们尝试改进模型。

七.尝试优化

试着采用改变K值的方法。

把k值设置为6,运行。得到混淆矩阵如下。

可视化如下:

接下来计算指标值。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 80% 之间,说明模型有较好的预测能力,但仍有改进空间。

至于后续的优化,可能就需要继续调整k值或者采用其他的分类算法了,在这里不做过多讨论。

欢迎各位大佬批评指正,别忘了点赞加关注喔~

相关推荐
MarkHD2 分钟前
第十一天 线性代数基础
线性代数·决策树·机器学习
打羽毛球吗️6 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
蒙娜丽宁7 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev9 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
好喜欢吃红柚子23 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python27 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯36 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠39 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
千天夜1 小时前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
测试界的酸菜鱼1 小时前
Python 大数据展示屏实例
大数据·开发语言·python