机器学习Python代码实战(二)分类算法:k-最近邻

一.k-最近邻算法步骤

1.选择适当的k值。它表示在预测新的数据点时要考虑的邻居数量。

2.计算距离。计算未知点与其他所有点之间的距离。常用的距离计算方法主要有欧氏距离,曼哈顿距离等。

3.选择邻居。在训练集中选择与要预测的数据点距离最近的k个邻居。

4.预测响应。统计这k个邻居中各类别的数量,并将要预测的数据点预测为这k个邻居中数量最多的类别。

下面以使用K-最近邻算法预测糖尿病(不需要特征标准化)为例说明k-最近邻算法的使用。

二.导入库和数据集

其中变量的中文含义如下:

Pregnancies:怀孕次数

Glucose:葡萄糖测试值

BloodPressure:血压

SkinThickness:皮肤厚度

Insulin:胰岛素

BMI:身体质量指数

Predigree:糖尿病遗传函数

Age:年龄

Outcome:糖尿病标签(即预测结果)

三.数据清洗

可以看到在上一步中某些列均出现了异常值0,此时需要进行数据清洗把异常值先替换为NaN,然后用该列的平均值填充。

四.划分测试集和训练集

先获取x,y如下。

然后进行训练集和测试集的划分,依旧是训练集占80%,测试集占20%。打印x的测试集如下。

五.模型训练

由于本数据集的自变量之间的数量级差别不是很大,故不需要使用特征标准化。

先导入k-最近邻分类器,再开始在训练集上训练模型

六.预测结果并输出混淆矩阵

混淆矩阵可视化如下:

采用准确率(Accurancy),精确率(precision),召回率(Recall),F1分数(F1 score)来评估模型。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 70% 之间,说明模型有一定的预测能力,但效果并不是特别好。

因此,我们尝试改进模型。

七.尝试优化

试着采用改变K值的方法。

把k值设置为6,运行。得到混淆矩阵如下。

可视化如下:

接下来计算指标值。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 80% 之间,说明模型有较好的预测能力,但仍有改进空间。

至于后续的优化,可能就需要继续调整k值或者采用其他的分类算法了,在这里不做过多讨论。

欢迎各位大佬批评指正,别忘了点赞加关注喔~

相关推荐
爬虫程序猿24 分钟前
《京东商品详情爬取实战指南》
爬虫·python
胡耀超27 分钟前
4、Python面向对象编程与模块化设计
开发语言·python·ai·大模型·conda·anaconda
空白到白1 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
大佬,救命!!!2 小时前
整理python快速构建数据可视化前端的Dash库
python·信息可视化·学习笔记·dash·记录成长
孔丘闻言2 小时前
python调用mysql
android·python·mysql
zzywxc7872 小时前
AI在金融、医疗、教育、制造业等领域的落地案例
人工智能·机器学习·金融·prompt·流程图
Teletele-Lin2 小时前
Miniconda安装与VSCode搭建远程Python、Jupyter开发环境
vscode·python·jupyter·环境配置·远程开发
伊玛目的门徒3 小时前
告别 OpenAI SDK:如何使用 Python requests 库调用大模型 API(例如百度的ernie-4.5-turbo)
python·openai·requests·大模型调用·ernie-4.5-turbo
非门由也3 小时前
《sklearn机器学习——回归指标2》
机器学习·回归·sklearn
Learn Beyond Limits3 小时前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai