机器学习Python代码实战(二)分类算法:k-最近邻

一.k-最近邻算法步骤

1.选择适当的k值。它表示在预测新的数据点时要考虑的邻居数量。

2.计算距离。计算未知点与其他所有点之间的距离。常用的距离计算方法主要有欧氏距离,曼哈顿距离等。

3.选择邻居。在训练集中选择与要预测的数据点距离最近的k个邻居。

4.预测响应。统计这k个邻居中各类别的数量,并将要预测的数据点预测为这k个邻居中数量最多的类别。

下面以使用K-最近邻算法预测糖尿病(不需要特征标准化)为例说明k-最近邻算法的使用。

二.导入库和数据集

其中变量的中文含义如下:

Pregnancies:怀孕次数

Glucose:葡萄糖测试值

BloodPressure:血压

SkinThickness:皮肤厚度

Insulin:胰岛素

BMI:身体质量指数

Predigree:糖尿病遗传函数

Age:年龄

Outcome:糖尿病标签(即预测结果)

三.数据清洗

可以看到在上一步中某些列均出现了异常值0,此时需要进行数据清洗把异常值先替换为NaN,然后用该列的平均值填充。

四.划分测试集和训练集

先获取x,y如下。

然后进行训练集和测试集的划分,依旧是训练集占80%,测试集占20%。打印x的测试集如下。

五.模型训练

由于本数据集的自变量之间的数量级差别不是很大,故不需要使用特征标准化。

先导入k-最近邻分类器,再开始在训练集上训练模型

六.预测结果并输出混淆矩阵

混淆矩阵可视化如下:

采用准确率(Accurancy),精确率(precision),召回率(Recall),F1分数(F1 score)来评估模型。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 70% 之间,说明模型有一定的预测能力,但效果并不是特别好。

因此,我们尝试改进模型。

七.尝试优化

试着采用改变K值的方法。

把k值设置为6,运行。得到混淆矩阵如下。

可视化如下:

接下来计算指标值。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 80% 之间,说明模型有较好的预测能力,但仍有改进空间。

至于后续的优化,可能就需要继续调整k值或者采用其他的分类算法了,在这里不做过多讨论。

欢迎各位大佬批评指正,别忘了点赞加关注喔~

相关推荐
nju_spy4 分钟前
力扣每日一题(11.10-11.29)0-1 和 k 整除系列
python·算法·leetcode·前缀和·单调栈·最大公约数·0-1背包
roman_日积跬步-终至千里9 分钟前
【模式识别与机器学习(8)】主要算法与技术(下篇:高级模型与集成方法)之 元学习
学习·算法·机器学习
名扬9119 分钟前
webrtc编译问题-ubuntu
开发语言·python
haing201915 分钟前
Bezier曲线曲率极值的计算方法
人工智能·算法·机器学习·曲率极值
岁月宁静18 分钟前
从 JavaScript 到 Python:前端工程师的完全转换指南
前端·javascript·python
白云千载尽28 分钟前
Python 初学者 / 中级开发者常踩坑的 10 个坑 —— 要用好几年才能彻底搞清楚的
开发语言·python
Aries·Zhao33 分钟前
Python小白学习之环境安装
python·pycharm·visual studio code
broken_utopia38 分钟前
PyTorch中view/transpose/permute的内存可视化解析
人工智能·pytorch·python
大千AI助手1 小时前
正态分布:机器学习中的统计基石与高斯遗产
人工智能·机器学习·概率论·高斯分布·正态分布·概率分布·大千ai助手
YongCheng_Liang1 小时前
Python实现PDF 转 JPG 批量转换工具
运维·python·pdf