机器学习Python代码实战(二)分类算法:k-最近邻

一.k-最近邻算法步骤

1.选择适当的k值。它表示在预测新的数据点时要考虑的邻居数量。

2.计算距离。计算未知点与其他所有点之间的距离。常用的距离计算方法主要有欧氏距离,曼哈顿距离等。

3.选择邻居。在训练集中选择与要预测的数据点距离最近的k个邻居。

4.预测响应。统计这k个邻居中各类别的数量,并将要预测的数据点预测为这k个邻居中数量最多的类别。

下面以使用K-最近邻算法预测糖尿病(不需要特征标准化)为例说明k-最近邻算法的使用。

二.导入库和数据集

其中变量的中文含义如下:

Pregnancies:怀孕次数

Glucose:葡萄糖测试值

BloodPressure:血压

SkinThickness:皮肤厚度

Insulin:胰岛素

BMI:身体质量指数

Predigree:糖尿病遗传函数

Age:年龄

Outcome:糖尿病标签(即预测结果)

三.数据清洗

可以看到在上一步中某些列均出现了异常值0,此时需要进行数据清洗把异常值先替换为NaN,然后用该列的平均值填充。

四.划分测试集和训练集

先获取x,y如下。

然后进行训练集和测试集的划分,依旧是训练集占80%,测试集占20%。打印x的测试集如下。

五.模型训练

由于本数据集的自变量之间的数量级差别不是很大,故不需要使用特征标准化。

先导入k-最近邻分类器,再开始在训练集上训练模型

六.预测结果并输出混淆矩阵

混淆矩阵可视化如下:

采用准确率(Accurancy),精确率(precision),召回率(Recall),F1分数(F1 score)来评估模型。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 70% 之间,说明模型有一定的预测能力,但效果并不是特别好。

因此,我们尝试改进模型。

七.尝试优化

试着采用改变K值的方法。

把k值设置为6,运行。得到混淆矩阵如下。

可视化如下:

接下来计算指标值。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 80% 之间,说明模型有较好的预测能力,但仍有改进空间。

至于后续的优化,可能就需要继续调整k值或者采用其他的分类算法了,在这里不做过多讨论。

欢迎各位大佬批评指正,别忘了点赞加关注喔~

相关推荐
Q_Q51100828540 分钟前
python+django/flask的情绪宣泄系统
spring boot·python·pycharm·django·flask·node.js·php
撸码猿1 小时前
《Python AI入门》第9章 让机器读懂文字——NLP基础与情感分析实战
人工智能·python·自然语言处理
二川bro1 小时前
多模态AI开发:Python实现跨模态学习
人工智能·python·学习
2301_764441331 小时前
Python构建输入法应用
开发语言·python·算法
love530love1 小时前
【笔记】ComfUI RIFEInterpolation 节点缺失问题(cupy CUDA 安装)解决方案
人工智能·windows·笔记·python·插件·comfyui
青瓷程序设计1 小时前
昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
秋邱2 小时前
智启未来:AGI 教育融合 × 跨平台联盟 × 个性化空间,重构教育 AI 新范式开篇:一场 “教育 ×AI” 的范式革命
人工智能·python·重构·推荐算法·agi
爱吃泡芙的小白白2 小时前
vscode、anaconda、git、python配置安装(自用)
ide·git·vscode·python·anaconda·学习记录
谷隐凡二2 小时前
Kubernetes主从架构简单解析:基于Python的模拟实现
python·架构·kubernetes
老歌老听老掉牙2 小时前
Matplotlib Pyplot 数据可视化完全指南
python·信息可视化·matplotlib