机器学习Python代码实战(二)分类算法:k-最近邻

一.k-最近邻算法步骤

1.选择适当的k值。它表示在预测新的数据点时要考虑的邻居数量。

2.计算距离。计算未知点与其他所有点之间的距离。常用的距离计算方法主要有欧氏距离,曼哈顿距离等。

3.选择邻居。在训练集中选择与要预测的数据点距离最近的k个邻居。

4.预测响应。统计这k个邻居中各类别的数量,并将要预测的数据点预测为这k个邻居中数量最多的类别。

下面以使用K-最近邻算法预测糖尿病(不需要特征标准化)为例说明k-最近邻算法的使用。

二.导入库和数据集

其中变量的中文含义如下:

Pregnancies:怀孕次数

Glucose:葡萄糖测试值

BloodPressure:血压

SkinThickness:皮肤厚度

Insulin:胰岛素

BMI:身体质量指数

Predigree:糖尿病遗传函数

Age:年龄

Outcome:糖尿病标签(即预测结果)

三.数据清洗

可以看到在上一步中某些列均出现了异常值0,此时需要进行数据清洗把异常值先替换为NaN,然后用该列的平均值填充。

四.划分测试集和训练集

先获取x,y如下。

然后进行训练集和测试集的划分,依旧是训练集占80%,测试集占20%。打印x的测试集如下。

五.模型训练

由于本数据集的自变量之间的数量级差别不是很大,故不需要使用特征标准化。

先导入k-最近邻分类器,再开始在训练集上训练模型

六.预测结果并输出混淆矩阵

混淆矩阵可视化如下:

采用准确率(Accurancy),精确率(precision),召回率(Recall),F1分数(F1 score)来评估模型。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 70% 之间,说明模型有一定的预测能力,但效果并不是特别好。

因此,我们尝试改进模型。

七.尝试优化

试着采用改变K值的方法。

把k值设置为6,运行。得到混淆矩阵如下。

可视化如下:

接下来计算指标值。

模型的准确率、精确率、召回率和 F1 分数都在 50% 到 80% 之间,说明模型有较好的预测能力,但仍有改进空间。

至于后续的优化,可能就需要继续调整k值或者采用其他的分类算法了,在这里不做过多讨论。

欢迎各位大佬批评指正,别忘了点赞加关注喔~

相关推荐
是代码侠呀3 分钟前
让Promise飞,让github star 飞
python·开源·github·github star·github 加星
绝顶大聪明15 分钟前
[sklearn机器学习概述]机器学习-part3
人工智能·机器学习·sklearn
伊织code34 分钟前
PyTorch API 10 - benchmark、data、批处理、命名张量
pytorch·python·ai·api·-·10
绝顶大聪明41 分钟前
[特征工程]机器学习-part2
人工智能·机器学习
慕婉03071 小时前
机器学习实战:6种数据集划分方法详解与代码实现
人工智能·深度学习·机器学习·数据集划分
sword devil9001 小时前
基于pyqt的上位机开发
开发语言·python·pyqt
灯下夜无眠1 小时前
sklearn自定义pipeline的数据处理
人工智能·python·机器学习·pipeline·sklearn
weixin_428498491 小时前
C/C++工程中的Plugin机制设计与Python实现
c语言·c++·python
仙人掌_lz2 小时前
微调ModernBERT为大型语言模型打造高效“过滤器”
人工智能·python·ai·语言模型·自然语言处理·bert
小众AI2 小时前
fastmcp: 更好用的 MCP Python 框架
开发语言·人工智能·python