昇思25天学习打卡营第一天|快速入门

背景

华为组织了昇思25天学习营,从基础开始,提供算力支持,还是体验蛮好的。推荐大家报名参加。

学习内容

今天的内容是快速入门,很简单,当是复习基础内容了。

下载数据集=》模型组网=》模型训练=》保存模型,下面每一步简单记录一下。

一、下载和处理数据

这里使用到的数据集是mnist手写数字数据集。

MNIST数据集目录结构如下:

复制代码
MNIST_Data
└── train
    ├── train-images-idx3-ubyte (60000个训练图片)
    ├── train-labels-idx1-ubyte (60000个训练标签)
└── test
    ├── t10k-images-idx3-ubyte (10000个测试图片)
    ├── t10k-labels-idx1-ubyte (10000个测试标签)

二、网络构建

mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据(Tensor)的变换过程。

复制代码
# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)

三、模型训练

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。

反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。

参数优化:将梯度更新到参数上。

四、模型保存和加载

模型训练完成后,需要将其参数进行保存。

复制代码
# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

加载保存的权重分为两步:

重新实例化模型对象,构造模型。

加载模型参数,并将其加载至模型上。

总结

很简单的流程,按照训练营给的jupyter notebook教程一步步跑完。搞定!

相关推荐
四维碎片1 天前
【Qt】UDP跨平台调试工具
qt·学习·udp
好奇龙猫1 天前
【人工智能学习-AI入试相关题目练习-第十八次】
人工智能·学习
程序员辣条1 天前
AI产品经理:2024年职场发展的新机遇
人工智能·学习·职场和发展·产品经理·大模型学习·大模型入门·大模型教程
wanping158259923411 天前
AI Agent(学习六-FAISS 持久化到磁盘(重启不丢记忆))
人工智能·学习·faiss
知识分享小能手1 天前
SQL Server 2019入门学习教程,从入门到精通,SQL Server 2019数据库的操作(2)
数据库·学习·sqlserver
鄭郑1 天前
STM32学习笔记--I2C封装与OLED(2026.2.1)
笔记·stm32·学习
酒鼎1 天前
学习笔记(4)HTML5新特性(第3章)- WebSocket
笔记·学习·html5
-Springer-1 天前
STM32 学习 —— 个人学习笔记2-2(新建工程)
笔记·stm32·学习
tb_first1 天前
万字超详细苍穹外卖学习笔记4
java·spring boot·笔记·学习·spring·mybatis
代码游侠1 天前
学习笔记——Linux字符设备驱动开发
linux·arm开发·驱动开发·单片机·嵌入式硬件·学习·算法