【Python】处理 scikit-learn 中的 FutureWarning


那年夏天我和你躲在 这一大片宁静的海

直到后来我们都还在 对这个世界充满期待

今年冬天你已经不在 我的心空出了一块

很高兴遇见你 让我终究明白

回忆比真实精彩

🎵 王心凌《那年夏天宁静的海》


在数据科学和机器学习领域,scikit-learn 是一个非常流行的库,用于构建和评估各种机器学习模型。然而,随着版本的更新,库中的某些模块和功能可能会被弃用(deprecated),并在未来的版本中移除。最近在使用 scikit-learn 时,我们遇到了如下的 FutureWarning:

vbnet 复制代码
/usr/local/anaconda3/lib/python3.6/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.neighbors.base module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes/functions should instead be imported from sklearn.neighbors. Anything that cannot be imported from sklearn.neighbors is now part of the private API.
  warnings.warn(message, FutureWarning)
/usr/local/anaconda3/lib/python3.6/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.ensemble.bagging module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes/functions should instead be imported from sklearn.ensemble. Anything that cannot be imported from sklearn.ensemble is now part of the private API.
  warnings.warn(message, FutureWarning)

什么是 FutureWarning?

FutureWarning 是 Python 用来通知用户某些功能将在未来版本中被弃用的方式。虽然这些功能在当前版本中仍然可用,但开发者建议开始使用新的替代方案,以确保代码在未来版本中的兼容性。

在我们的例子中,警告告诉我们:

sklearn.neighbors.base 模块在 0.22 版本中被弃用,并将在 0.24 版本中移除。相应的类/函数应从 sklearn.neighbors 中导入。

sklearn.ensemble.bagging 模块在 0.22 版本中被弃用,并将在 0.24 版本中移除。相应的类/函数应从 sklearn.ensemble 中导入。

如何处理这些警告?

最好的处理方式是按照警告中的建议,更新代码以使用推荐的导入方式。例如:

旧的导入方式
python 复制代码
from sklearn.neighbors.base import KNeighborsClassifier
from sklearn.ensemble.bagging import BaggingClassifier
新的导入方式
python 复制代码
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import BaggingClassifier

通过这种方式,我们确保代码在未来的 scikit-learn 版本中依然可用,同时也提高了代码的可读性和可维护性。

示例代码修正

假设我们有一段代码需要处理空值并使用随机森林分类器进行训练,旧的代码可能如下所示:

python 复制代码
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
import pandas as pd

# 示例数据
# df = pd.read_csv('your_data.csv')

# 使用均值填充空值
imputer = SimpleImputer(strategy='mean')
X = df.drop('target', axis=1)
X_imputed = imputer.fit_transform(X)
y = df['target']

# 创建和训练随机森林分类器
clf = RandomForestClassifier(class_weight={0: 0.1667, 1: 0.8333})
clf.fit(X_imputed, y)

如果我们遇到 FutureWarning,需要更新导入方式,并可以选择暂时忽略这些警告:

python 复制代码
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)

from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
import pandas as pd

# 示例数据
# df = pd.read_csv('your_data.csv')

# 使用均值填充空值
imputer = SimpleImputer(strategy='mean')
X = df.drop('target', axis=1)
X_imputed = imputer.fit_transform(X)
y = df['target']

# 创建和训练随机森林分类器
clf = RandomForestClassifier(class_weight={0: 0.1667, 1: 0.8333})
clf.fit(X_imputed, y)

总结

通过关注并处理 FutureWarning,我们可以确保代码的前瞻性和兼容性,避免未来版本更新带来的潜在问题。最好是定期检查项目中的所有警告,并根据建议进行相应的代码更新。这不仅有助于保持代码的健康状态,还能提高代码的可维护性和性能。

相关推荐
棒棒的皮皮2 分钟前
【深度学习】YOLO模型评估之指标、可视化曲线分析
人工智能·深度学习·yolo·计算机视觉
驭白.21 分钟前
不止于自动化:新能源汽车智造的数字基座如何搭建?
大数据·人工智能·自动化·汽车·数字化转型·制造业
企业智能研究41 分钟前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
阿里云大数据AI技术1 小时前
面向 Interleaved Thinking 的大模型 Agent 蒸馏实践
人工智能
AI Echoes1 小时前
LangChain 非分割类型的文档转换器使用技巧
人工智能·python·langchain·prompt·agent
哔哔龙1 小时前
LangChain核心组件可用工具
人工智能
全栈独立开发者1 小时前
点餐系统装上了“DeepSeek大脑”:基于 Spring AI + PgVector 的 RAG 落地指南
java·人工智能·spring
程序之巅1 小时前
VS code 远程python代码debug
android·java·python
2501_941878741 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习
guoketg2 小时前
BERT的技术细节和面试问题汇总
人工智能·深度学习·bert