SCI一区级 | Matlab实现BO-Transformer-LSTM多变量时间序列预测

SCI一区级 | Matlab实现BO-Transformer-LSTM多变量时间序列预测

目录

效果一览








基本介绍

1.【SCI一区级】Matlab实现BO-Transformer-LSTM多变量时间序列预测,贝叶斯优化Transformer结合LSTM长短期记忆神经网络多变量时间序列预测,BO-Transformer-LSTM/Bayes-Transformer-LSTM(程序可以作为SCI一区级论文代码支撑,目前尚未发表);

2.贝叶斯优化参数为:学习率,LSTM隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

程序设计

  • 完整程序和数据下载私信博主回复Matlab实现BO-Transformer-LSTM多变量时间序列预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目
kim =  2;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测



%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end


%%  创建待优化函数
ObjFcn = @BOFunction;

%%  贝叶斯优化参数范围
optimVars = [

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
CappuccinoRose21 分钟前
MATLAB学习文档(二十二)
学习·算法·matlab
AAIshangyanxiu44 分钟前
【案例教程】生态碳汇涡度通量数据质量控制、缺失插补、可视化分析、光敏感性分析、温度敏感性分析、数据风浪区分析
matlab·涡度通量·生态碳汇
yongui478349 小时前
基于MATLAB的8QAM调制解调仿真与BER性能分析
开发语言·matlab
电力程序小学童12 小时前
【预测】基于CNN-BiLSTM-Attention的光伏预测模型
matlab·预测·光伏预测
Bwcx_lzp12 小时前
深度学习核心技术演进:从函数到 Transformer 架构
人工智能·深度学习·transformer
机器学习之心13 小时前
MATLAB基于加速遗传算法投影寻踪模型的企业可持续发展能力评价研究
matlab·加速遗传算法·投影寻踪模型·企业可持续发展能力评价
Matlab仿真实验室1 天前
基于Matlab实现图像栅格化处理
图像处理·计算机视觉·matlab·图像栅格化处理
jllllyuz1 天前
matlab裂纹检测与延展分析系统
人工智能·计算机视觉·matlab
jghhh011 天前
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
开发语言·算法·matlab
小毕超1 天前
基于 PyTorch 完全从零手搓 GPT 混合专家 (MOE) 对话模型
pytorch·transformer·moe