力扣每日一题 6/24 模拟 数组 单调栈

  • 博客主页:誓则盟约
  • 系列专栏:IT竞赛 专栏
  • 关注博主,后期持续更新系列文章
  • 如果有错误感谢请大家批评指出,及时修改
  • 感谢大家点赞👍收藏⭐评论✍

503.下一个更大元素II 【中等】

题目:

给定一个循环数组 numsnums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素

数字 x下一个更大的元素 是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1

示例 1:

复制代码
输入: nums = [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2;
数字 2 找不到下一个更大的数; 
第二个 1 的下一个最大的数需要循环搜索,结果也是 2。

示例 2:

复制代码
输入: nums = [1,2,3,4,3]
输出: [2,3,4,-1,4]

提示:

  • 1 <= nums.length <= 10**4
  • -10**9 <= nums[i] <= 10**9

分析问题:

思路1:

首先,通过两次遍历数组(实际是通过对索引取模来模拟)。在每次遍历中,如果当前元素大于栈顶元素所对应的数组值,就将栈顶元素弹出,并在结果数组中记录当前元素为栈顶元素的下一个更大元素。

在前 n 个位置时,将索引存入栈中。如果在后续的遍历中找到了更大的元素,就进行相应的处理。

最终,结果数组 ans 中存储了每个元素对应的下一个更大元素,如果没有则为 -1 。

思路2:

模拟。根据题目给的要求,我们遍历整个数组,去寻找他下一个更大的值,这里要把数组变成循环数组,因为我们要遍历整个列表。变成循环数组的方法无非就是把遍历的长度加长一点,然后模上len(nums),时间复杂度是O(N**2),但是这个方法用时间换空间,空间复杂度很低。


代码实现:

思路1:

python 复制代码
class Solution:
    def nextGreaterElements(self, nums: List[int]) -> List[int]:
        n = len(nums)
        stack = []
        ans = [-1]*n 

        for i in range(2*n):
            x = nums[i % n]
            while stack and x > nums[stack[-1]]:
                ans[stack.pop()] = x 
            if i < n:
                stack.append(i)
        return ans

这种方法时间复杂度和空间复杂度都是比较优越的。

思路2:

python 复制代码
class Solution:
    def nextGreaterElements(self, nums: List[int]) -> List[int]:
        n=len(nums)
        ls=[]
        for i in range(len(nums)):
            for j in range(i+1,i+len(nums)+1):
                if j%n==i: 
                    ls.append(-1)
                    break
                elif nums[j%n] > nums[i]:
                    ls.append(nums[j%n])
                    break
        return ls

思路2是比较容易想出来的一种方法,他的优点就在于空间复杂度较低,通俗易懂。但是时间复杂度较高。


总结:

思路一(使用栈)代码详解
  1. 首先,获取输入数组 nums 的长度 n ,并初始化一个空栈 stack 和结果数组 ans ,其中 ans 中的每个元素初始值都为 -1
  2. 然后,通过一个循环,模拟对数组进行两轮遍历(实际是通过 i % n 来实现取模操作,达到循环数组的效果)。
  3. 对于每次循环获取的当前元素 x ,如果栈不为空且 x 大于栈顶元素对应的数组值,就将栈顶元素弹出,并在结果数组 ans 中记录 x 为弹出元素的下一个更大元素。
  4. 在前 n 次循环中(即第一次遍历数组时),将当前索引 i 存入栈中。
  5. 最终,返回结果数组 ans ,其中每个位置存储了对应元素的下一个更大元素,如果没有则为 -1
思路二(使用两层循环)代码详解
  1. 首先获取输入数组 nums 的长度 n ,并创建一个空列表 ls 用于存储结果。
  2. 外层循环遍历数组中的每个元素。对于每个元素,通过内层循环从其右侧的下一个位置开始,模拟循环数组的方式进行查找。
  3. 在内层循环中,如果当前位置经过取模后又回到了起始位置(即 j % n == i ),说明在右侧没有找到更大的元素,将 -1 存入结果列表 ls 并结束内层循环。
  4. 如果找到了右侧第一个比当前元素大的元素(即 nums[j % n] > nums[i] ),将该更大元素存入结果列表 ls 并结束内层循环。
  5. 外层循环结束后,返回结果列表 ls

总的来说,第一段代码通过栈来优化查找过程,空间复杂度相对较低;第二段代码使用两层循环直接查找,逻辑相对简单直观,但时间复杂度可能相对较高。


考点
  • 对数组的遍历操作。
  • 循环边界的处理,包括通过取模实现数组的循环遍历。
  • 利用栈或多重循环来比较元素大小。
收获
  • 学习了两种不同的方法来解决同一类问题,一种是利用栈的特性,另一种是通过两层循环。
  • 加深了对数组操作和循环控制的理解,尤其是在处理循环边界和重复利用数组元素的场景。
  • 体会到了不同算法的时间复杂度和空间复杂度的差异,第一段代码使用栈的方式在空间复杂度上相对更优,而第二段代码的两层循环在时间复杂度上可能相对较差。
  • 提高了根据问题需求设计合适算法的能力,需要在不同的场景中权衡算法的效率和实现的难易程度。

"我们登上并非我们所选择的舞台,演出并非我们所选择的剧本。"------《Enchiridion》

相关推荐
oliveira-time几秒前
golang学习2
算法
面试鸭9 分钟前
离谱!买个人信息买到网安公司头上???
java·开发语言·职场和发展
南宫生1 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步2 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara2 小时前
函数对象笔记
c++·算法
测试19982 小时前
2024软件测试面试热点问题
自动化测试·软件测试·python·测试工具·面试·职场和发展·压力测试
泉崎2 小时前
11.7比赛总结
数据结构·算法
你好helloworld2 小时前
滑动窗口最大值
数据结构·算法·leetcode
AI街潜水的八角3 小时前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
白榆maple3 小时前
(蓝桥杯C/C++)——基础算法(下)
算法