【Python机器学习】凝聚聚类——层次聚类与树状图

凝聚聚类生成了所谓的层次聚类。聚类过程迭代进行,每个点都从一个单点簇变为属于最终的某个簇。每个中间步骤都提供了数据的一种聚类(簇的个数也不相同)。有时候,同时查看所有可能的聚类也是有帮助的。

举例:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots

mglearn.plots.plot_agglomerative()
plt.show()

虽然这种可视化为层次聚类提供了非常详细的视图,但它依赖于数据的二维性质,因此不能呢个用于具有两个特征的数据集。但还有另一个层次聚类可视化的工具,那就是树状图,它可以处理多维数据集。

可以利用SciPy生成树状图,SciPy的聚类算法接口与scikit-learn的聚类算法稍有不同。SciPy提供了一个函数,然后接收数组X并计算出一个链接数组,它对层次聚类的相似度进行编码。然后我们就可以将这个链接数组提供给scipy的dendrogram函数来绘制树状图。

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots
from scipy.cluster.hierarchy import dendrogram,ward
from sklearn.datasets import make_blobs,make_moons


X,y=make_blobs(random_state=0,n_samples=12)
linkage_array=ward(X)
dendrogram(linkage_array)

ax=plt.gca()
bounds=ax.get_xbound()
ax.plot(bounds,[7.25,7.25],'--',c='k')
ax.plot(bounds,[4,4],'--',c='k')

ax.text(bounds[1],7.25,'2',va='center',fontdict={'size':15})
ax.text(bounds[1],4,'3',va='center',fontdict={'size':15})
plt.xlabel('Sample index')
plt.ylabel('Cluster distance')
plt.show()

树状图在底部显示数据点(0到11),然后以这些点作为叶节点绘制一棵树,每合并两个簇就添加一个新的父节点。

从下往上看,数据点1、4首先被合并,接下来,6、9被合并为一个簇,以此类推。

树状图的y轴不仅说明凝聚算法中两个簇合适合并,每个分支的长度还表示被合并的簇之间的距离。在这个树状图中,最长的分支是用标记为'3'的虚线表示。

相关推荐
charley.layabox1 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人2 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝4 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z4 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
江沉晚呤时4 小时前
在 C# 中调用 Python 脚本:实现跨语言功能集成
python·microsoft·c#·.net·.netcore·.net core
西西西仓鼠4 小时前
python学习打卡:DAY 40 训练和测试的规范写法
学习
大知闲闲哟5 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
Magnetic_h5 小时前
【iOS】方法与消息底层分析
笔记·学习·macos·ios·objective-c·cocoa
飞哥数智坊5 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli75 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生