【Python机器学习】凝聚聚类——层次聚类与树状图

凝聚聚类生成了所谓的层次聚类。聚类过程迭代进行,每个点都从一个单点簇变为属于最终的某个簇。每个中间步骤都提供了数据的一种聚类(簇的个数也不相同)。有时候,同时查看所有可能的聚类也是有帮助的。

举例:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots

mglearn.plots.plot_agglomerative()
plt.show()

虽然这种可视化为层次聚类提供了非常详细的视图,但它依赖于数据的二维性质,因此不能呢个用于具有两个特征的数据集。但还有另一个层次聚类可视化的工具,那就是树状图,它可以处理多维数据集。

可以利用SciPy生成树状图,SciPy的聚类算法接口与scikit-learn的聚类算法稍有不同。SciPy提供了一个函数,然后接收数组X并计算出一个链接数组,它对层次聚类的相似度进行编码。然后我们就可以将这个链接数组提供给scipy的dendrogram函数来绘制树状图。

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots
from scipy.cluster.hierarchy import dendrogram,ward
from sklearn.datasets import make_blobs,make_moons


X,y=make_blobs(random_state=0,n_samples=12)
linkage_array=ward(X)
dendrogram(linkage_array)

ax=plt.gca()
bounds=ax.get_xbound()
ax.plot(bounds,[7.25,7.25],'--',c='k')
ax.plot(bounds,[4,4],'--',c='k')

ax.text(bounds[1],7.25,'2',va='center',fontdict={'size':15})
ax.text(bounds[1],4,'3',va='center',fontdict={'size':15})
plt.xlabel('Sample index')
plt.ylabel('Cluster distance')
plt.show()

树状图在底部显示数据点(0到11),然后以这些点作为叶节点绘制一棵树,每合并两个簇就添加一个新的父节点。

从下往上看,数据点1、4首先被合并,接下来,6、9被合并为一个簇,以此类推。

树状图的y轴不仅说明凝聚算法中两个簇合适合并,每个分支的长度还表示被合并的簇之间的距离。在这个树状图中,最长的分支是用标记为'3'的虚线表示。

相关推荐
GIOTTO情18 分钟前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
阿里云大数据AI技术27 分钟前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
试试勇气29 分钟前
Linux学习笔记(八)--环境变量与进程地址空间
linux·笔记·学习
蒙奇D索大30 分钟前
【数据结构】考研数据结构核心考点:平衡二叉树(AVL树)详解——平衡因子与4大旋转操作入门指南
数据结构·笔记·学习·考研·改行学it
小关会打代码34 分钟前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀40 分钟前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
布林模型1 小时前
缠论工具czsc快速使用入门(二)
python·缠论·快速入门·czsc
邂逅you1 小时前
用python操作mysql之pymysql库基本操作
数据库·python·mysql
啊森要自信1 小时前
【GUI自动化测试】YAML 配置文件应用:从语法解析到 Python 读写
android·python·缓存·pytest·pip·dash
机器之心1 小时前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai