【代码随想录算法训练营第五十一天|115.不同的子序列、583. 两个字符串的删除操作、72.编辑距离】

文章目录

115.不同的子序列

dp数组表示s和t中前i-1j-1项中s中出现过的t的次数,递推公式中当选择到s的第i-1的元素和t[j-1]相等时,需要考虑两种情况,第一种是选择用s[i-1]这个元素和t[j-1]匹配,那么dp[i][j]就应该是dp[i-1][j-1],如果不使用s[i-1]的话,就应该是和dp[i-1][j]相同,因此dp[i][j] = dp[i-1][j-1] + dp[i-1][j]。当s[i-1]不等于t[j-1]时,就相当于是不使用s[i-1]和t[:j]匹配的情况,因此赋值为dp[i-1][j]。

python 复制代码
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        len1 = len(s)
        len2 = len(t)
        dp = [[0]* (len2+1) for _ in range(len1+1)] # dp[i][j] 前一位是s后一位是t,t不变在s中删减,当t=''的时候dp[i][0]应该为1 
        for d in dp:
            d[0] = 1
        for i in range(1, len1+1):
            for j in range(1, len2+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]

583. 两个字符串的删除操作

其实就是找两个数组相同的公共子序列长度,最后输出的时候拿两个数组的长度和减去两倍的最大公共子序列长度就可以。

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        len1 = len(word1)
        len2 = len(word2)
        dp = [[0]*(len2+1) for _ in range(len1+1)] # dp[i][j]表示word1选择前i位,word2选择前j位的时候两个字符串相同字符的个数
        for i in range(1, len1+1):
            for j in range(1, len2+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        return len1 + len2 - 2*dp[-1][-1]

72.编辑距离

本质上还是在找两个字符串的最长相同子序列,这里的增加操作和删除操作其实可以看作是同一种操作,只是在两个字符串上反过来,因此需要增加一个字符也可以看作是另一个字符种删除掉这个字符,所以当word1和word2的字符i和j不相等的时候,dp[i][j]在dp[i-1][j]即删除word1元素,dp[i][j-1]即删除word2元素,和dp[i-1][j-1]即替换元素中选择最小的,然后+1。还有一个重要的是初始dp的时候需要对所有一个为空另一个不为空的时候的dp赋予初值,初值就是那个字符串的长度。

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        len1 = len(word1)
        len2 = len(word2)
        dp =[[0] * (len2+1) for _ in range(len1+1)]
        for i in range(len1+1):
            dp[i][0] = i
        for j in range(len2+1):
            dp[0][j] = j
        for i in range(1, len1+1):
            for j in range(1, len2+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
        return dp[-1][-1]
相关推荐
轻抚酸~29 分钟前
KNN(K近邻算法)-python实现
python·算法·近邻算法
Yue丶越3 小时前
【C语言】字符函数和字符串函数
c语言·开发语言·算法
小白程序员成长日记3 小时前
2025.11.24 力扣每日一题
算法·leetcode·职场和发展
有一个好名字3 小时前
LeetCode跳跃游戏:思路与题解全解析
算法·leetcode·游戏
AndrewHZ4 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
蓝牙先生4 小时前
简易TCP C/S通信
c语言·tcp/ip·算法
稚辉君.MCA_P8_Java8 小时前
Gemini永久会员 Java中的四边形不等式优化
java·后端·算法
稚辉君.MCA_P8_Java8 小时前
通义 插入排序(Insertion Sort)
数据结构·后端·算法·架构·排序算法
无限进步_8 小时前
C语言动态内存的二维抽象:用malloc实现灵活的多维数组
c语言·开发语言·数据结构·git·算法·github·visual studio
Swift社区9 小时前
LeetCode 432 - 全 O(1) 的数据结构
数据结构·算法·leetcode