【代码随想录算法训练营第五十一天|115.不同的子序列、583. 两个字符串的删除操作、72.编辑距离】

文章目录

115.不同的子序列

dp数组表示s和t中前i-1j-1项中s中出现过的t的次数,递推公式中当选择到s的第i-1的元素和t[j-1]相等时,需要考虑两种情况,第一种是选择用s[i-1]这个元素和t[j-1]匹配,那么dp[i][j]就应该是dp[i-1][j-1],如果不使用s[i-1]的话,就应该是和dp[i-1][j]相同,因此dp[i][j] = dp[i-1][j-1] + dp[i-1][j]。当s[i-1]不等于t[j-1]时,就相当于是不使用s[i-1]和t[:j]匹配的情况,因此赋值为dp[i-1][j]。

python 复制代码
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        len1 = len(s)
        len2 = len(t)
        dp = [[0]* (len2+1) for _ in range(len1+1)] # dp[i][j] 前一位是s后一位是t,t不变在s中删减,当t=''的时候dp[i][0]应该为1 
        for d in dp:
            d[0] = 1
        for i in range(1, len1+1):
            for j in range(1, len2+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]

583. 两个字符串的删除操作

其实就是找两个数组相同的公共子序列长度,最后输出的时候拿两个数组的长度和减去两倍的最大公共子序列长度就可以。

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        len1 = len(word1)
        len2 = len(word2)
        dp = [[0]*(len2+1) for _ in range(len1+1)] # dp[i][j]表示word1选择前i位,word2选择前j位的时候两个字符串相同字符的个数
        for i in range(1, len1+1):
            for j in range(1, len2+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        return len1 + len2 - 2*dp[-1][-1]

72.编辑距离

本质上还是在找两个字符串的最长相同子序列,这里的增加操作和删除操作其实可以看作是同一种操作,只是在两个字符串上反过来,因此需要增加一个字符也可以看作是另一个字符种删除掉这个字符,所以当word1和word2的字符i和j不相等的时候,dp[i][j]在dp[i-1][j]即删除word1元素,dp[i][j-1]即删除word2元素,和dp[i-1][j-1]即替换元素中选择最小的,然后+1。还有一个重要的是初始dp的时候需要对所有一个为空另一个不为空的时候的dp赋予初值,初值就是那个字符串的长度。

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        len1 = len(word1)
        len2 = len(word2)
        dp =[[0] * (len2+1) for _ in range(len1+1)]
        for i in range(len1+1):
            dp[i][0] = i
        for j in range(len2+1):
            dp[0][j] = j
        for i in range(1, len1+1):
            for j in range(1, len2+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
        return dp[-1][-1]
相关推荐
mjhcsp14 分钟前
P14795 [JOI 2026 二次预选] 分班 / Class Division
数据结构·c++·算法
闻缺陷则喜何志丹15 分钟前
【计算几何 最短路 动态规划】P1354 房间最短路问题
数学·算法·动态规划·最短路·计算几何·洛谷
girl-072630 分钟前
2025.12.29实验题目分析总结
数据结构·算法
点云SLAM36 分钟前
Truncated Least Squares(TLS 截断最小二乘)算法原理
算法·slam·位姿估计·数值优化·点云配准·非凸全局优化·截断最小二乘法
sin_hielo1 小时前
leetcode 840
数据结构·算法·leetcode
feifeigo1231 小时前
基于MATLAB的木材图像去噪算法实现
算法·计算机视觉·matlab
股朋公式网1 小时前
斩仙飞刀、 通达信飞刀 源码
python·算法
不吃橘子的橘猫1 小时前
NVIDIA DLI 《Build a Deep Research Agent》学习笔记
开发语言·数据库·笔记·python·学习·算法·ai
Xの哲學1 小时前
Linux CFS 调度器深度解析
linux·服务器·算法·架构·边缘计算
bedynamic1 小时前
蚁群算法原理及实现
算法·智能算法