前置知识
1、缓存击穿、缓存失效的基本概念
2、什么样的 数据 需要加分布式锁
3、课上代码
05-一线大厂Redis高并发缓存架构实战与性能优化
对于 公司 中 简单的增删改查 做 高性能处理 , 采用递进的方式一步步优化。
- 普通Redis用法: 新增、修改、删除设置缓存 , 查询是获取缓存 ,如果没获取到取数据库 。
- 实现简单的数据冷热分离: 采用 对 key 加 过期时间 、 查询时 做 缓存读延期 处理。( 这种 针对于 大规模 数据 , 如京东商品 可能 上亿, 但是 只有1% 的商品经常访问 。 )
- 对于数据的批量更新问题: 批量更新会导致大量数据的数据同时过期, ( 数据库压力可能增大,导致数据库抖动 这就是缓存击穿 )在设置过期时间时添加 随机过期时间 解决缓存击穿问题
- 解决缓存穿透问题: 如果数据已经删除,但是还有请求 到查询接口,数据库与Redis都查不到。 解决方案:设置空缓存,并设置一个相对较短的过期时间。( 即使有几十万 空数据缓存 , 那么 在 几分钟后都失效了,不会占用 缓存空间)
- 冷门数据缓存重建问题: DCL(double check look)机制实现缓存重建
- 使用分布式锁解决缓存数据库双写不一致 。
- 如果读多写少 使用读写锁 优化分布式锁,
- 优化DCL锁,使用tryLock(权衡使用与否)
- 对于单节点 redis 并发 差不多十万,如果是上百万并发同时访问redis 不一定能抗住,会导致缓存雪崩。需要本地缓存架构解决,如Guava、Ehcache。
代码
@Service
public class ProductService {
@Autowired
private ProductDao productDao;
@Autowired
private RedisUtil redisUtil;
@Autowired
private Redisson redisson;
public static final Integer PRODUCT_CACHE_TIMEOUT = 60 * 60 * 24;
public static final String EMPTY_CACHE = "{}";
public static final String LOCK_PRODUCT_HOT_CACHE_PREFIX = "lock:product:hot_cache:";
public static final String LOCK_PRODUCT_UPDATE_PREFIX = "lock:product:update:";
public static Map<String, Product> productMap = new ConcurrentHashMap<>();
@Transactional
public Product create(Product product) {
Product productResult = productDao.create(product);
redisUtil.set(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), JSON.toJSONString(productResult),
genProductCacheTimeout(), TimeUnit.SECONDS);
return productResult;
}
@Transactional
public Product update(Product product) {
Product productResult = null;
//RLock updateProductLock = redisson.getLock(LOCK_PRODUCT_UPDATE_PREFIX + product.getId());
RReadWriteLock readWriteLock = redisson.getReadWriteLock(LOCK_PRODUCT_UPDATE_PREFIX + product.getId());
RLock writeLock = readWriteLock.writeLock();
writeLock.lock();
try {
productResult = productDao.update(product);
redisUtil.set(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), JSON.toJSONString(productResult),
genProductCacheTimeout(), TimeUnit.SECONDS);
productMap.put(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), product);
} finally {
writeLock.unlock();
}
return productResult;
}
public Product get(Long productId) throws InterruptedException {
Product product = null;
String productCacheKey = RedisKeyPrefixConst.PRODUCT_CACHE + productId;
product = getProductFromCache(productCacheKey);
if (product != null) {
return product;
}
//DCL
RLock hotCacheLock = redisson.getLock(LOCK_PRODUCT_HOT_CACHE_PREFIX + productId);
hotCacheLock.lock();
//boolean result = hotCacheLock.tryLock(3, TimeUnit.SECONDS);
try {
product = getProductFromCache(productCacheKey);
if (product != null) {
return product;
}
//RLock updateProductLock = redisson.getLock(LOCK_PRODUCT_UPDATE_PREFIX + productId);
RReadWriteLock readWriteLock = redisson.getReadWriteLock(LOCK_PRODUCT_UPDATE_PREFIX + productId);
RLock rLock = readWriteLock.readLock();
rLock.lock();
try {
product = productDao.get(productId);
if (product != null) {
redisUtil.set(productCacheKey, JSON.toJSONString(product),
genProductCacheTimeout(), TimeUnit.SECONDS);
productMap.put(productCacheKey, product);
} else {
redisUtil.set(productCacheKey, EMPTY_CACHE, genEmptyCacheTimeout(), TimeUnit.SECONDS);
}
} finally {
rLock.unlock();
}
} finally {
hotCacheLock.unlock();
}
return product;
}
private Integer genProductCacheTimeout() {
return PRODUCT_CACHE_TIMEOUT + new Random().nextInt(5) * 60 * 60;
}
private Integer genEmptyCacheTimeout() {
return 60 + new Random().nextInt(30);
}
private Product getProductFromCache(String productCacheKey) {
Product product = productMap.get(productCacheKey);
if (product != null) {
return product;
}
String productStr = redisUtil.get(productCacheKey);
if (!StringUtils.isEmpty(productStr)) {
if (EMPTY_CACHE.equals(productStr)) {
redisUtil.expire(productCacheKey, genEmptyCacheTimeout(), TimeUnit.SECONDS);
return new Product();
}
product = JSON.parseObject(productStr, Product.class);
redisUtil.expire(productCacheKey, genProductCacheTimeout(), TimeUnit.SECONDS); //读延期
}
return product;
}
}