数据挖掘常见算法(聚类)

划分方法

K-均值算法(K-means算法)

方法:

  1. 首先选择K个随机的点,称为聚类中心.
  2. 对于数据集中的,每一个数据,按照距离K个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类.
  3. 计算每一个组的平均值,将改组所关联的中心点移动到平均值的位置
  4. 重复2~4直至中心点不再变化.

PAM(k-中心点算法) K-medoids

算法分析:k-中心点算法消除了k-平均算法对孤立点的敏感性;比k-平均算法更健壮。算法分析:k-中心点算法消除了k-平均算法对孤立点的敏感性;比k-平均算法更健壮。

层次方法

SOM聚类算法

FCM聚类算法

AGNES算法

自底向上的凝聚层次聚类方法

AGNES将每个对象自为一簇,然后这些簇根据某种准则逐步合并,直到所有的对象最终合并形成一个簇。

DIANA算法

自顶向下的分裂层次聚类方法

在DIANA中,所有的对象用于形成一个初始簇。根据某种原则(如,簇中最近的相邻对象的最大欧氏距离),将该簇分裂。簇的分裂过程反复进行,直到最终每个新簇只包含一个对象。

BIRCH 算法****算法

BIRCH算法,首先用树结构对数据对象进行层次划分,其中叶节点或低层次的非叶节点可以看作是由分辨率决定的"微簇",然后使用其他的聚类算法对这些微簇进行宏聚类,它克服了凝聚聚类方法所面临的两个困难:

①可伸缩性;

②不能撤销前一步所做的工作。

BIRCH 算法最大的特点是能利用有限的内存资源完成对大数据集高质量地聚类,通过单遍扫描数据集最小化I/O 代价。

基于密度的方法

DBSCAN算法

OPTICS算法

DENCLUE算法

相关推荐
麦麦麦造6 分钟前
DeepSeek突然发布 V3.2-exp,长文本能力加强,价格进一步下探
算法
lingran__1 小时前
速通ACM省铜第十七天 赋源码(Racing)
c++·算法
MobotStone2 小时前
手把手教你玩转AI绘图
算法
CappuccinoRose2 小时前
MATLAB学习文档(二十二)
学习·算法·matlab
学c语言的枫子3 小时前
数据结构——基本查找算法
算法
yanqiaofanhua3 小时前
C语言自学--自定义类型:结构体
c语言·开发语言·算法
sali-tec3 小时前
C# 基于halcon的视觉工作流-章39-OCR识别
开发语言·图像处理·算法·计算机视觉·c#·ocr
芒克芒克3 小时前
LeetCode 面试经典 150 题之判断子序列解题详解
算法
兮山与4 小时前
算法1.0
算法
维维180-3121-14554 小时前
生态碳汇涡度相关监测与通量数据分析
数据挖掘·数据分析·生态·遥感·碳汇