李沐深度学习知识点—数值稳定性、模型激活函数、全连接层到卷积、卷积层

数值稳定性

其中h是一个向量,向量关于向量的倒数是一个矩阵,因此求梯度是求矩阵乘法

矩阵乘法带来了 梯度爆炸,梯度消失

模型初始化和激活函数

归一化:不管梯度多大,我都把梯度拉回来,否的出现梯度爆炸和梯度消失问题。

不管做多深,都能在一个合理范围内

假设权重是独立同分布,定义均值和方差,t是层数

nt-1是t层输入的维度,nt是输出的维度,除非输入等于输入,除非无法相等

γt是第t层权重的方差

不能满足同时,取个折中,给定当前层和输出层权重大小,就能确定方差大小。

采用正态分布,当前值是0,方差不是固定的0.01了,是根据输入输出决定的。


如果想使得前项输出的均值和方差都是0,固定,那么β=0,α=1.

意味着什么?意味着激活函数fx必须=x,其中tanh和relu满足在0点附近,sigmoid改变后可以满足fx=x

补充:激活函数:如果不用激活函数,每一层输出都是上层输入的线性函数,如果使用,激活函数给神经元引入了非线性因素,使神经网络可以逼近任何非线性函数。

总结:可以通过合理的权重初始值和激活函数的选取提升数值的稳定性。


全连接层到卷积

一张图片中找信息,不能所有点都检查一遍。需要满足两个原则

平移不变性

局部性

现在x位置变换后,权重也得跟着变换,如何能让他不变。不管ij怎么变换,输出的地方挪到哪个位置,用的识别检测器v都应该不变的。

当把一个模型的取值范围做了限制,模型复杂度就降低了。也就不用存那么多元素了。

假设要算ij这个输出话,以i为中心,a可以任意变换的位置都要看一遍,但实际不应该看那么远的地方,只看附近就行。因此做出限制。

卷积层是特殊的全连接层

全连接层:卷积、池化、激活函数但是将原始数据映射到隐藏特征空间,全连接层是将学到的"分布式特征表示"映射到样本标记空间的作用。


卷积层

3、统一的公式:o = [( i + 2p - k) / s] + 1

说是卷积层,但是为了实现方便,将权重的负号改为了正,实际上是二维交叉相关

气象地图涉及到了时间

总结:

卷积层将输入和核矩阵进行交叉相关,加上偏移后得到输出

核矩阵和偏移时可学习的参数

核矩阵的大小是超参数(kernel的大小)

解决了问题:权重随着输入变得特别大,卷积不会有这个问题。


相关推荐
xiaok1 分钟前
dify绑定飞书多维表格工具使用
人工智能
piggy侠5 分钟前
百度PaddleOCR-VL:基于0.9B超紧凑视觉语言模型,支持109种语言,性能超越GPT-4o等大模型
人工智能·算法·机器学习
xiaoxiaoxiaolll10 分钟前
封面论文丨薄膜铌酸锂平台实现强耦合电光调制,《Light Sci. Appl. 》报道机器学习优化新范式
人工智能·学习
XiaoYu200216 分钟前
AI精准提问手册:从模糊需求到精准输出的核心技能(上)
前端·人工智能·程序员
java_logo28 分钟前
Docker 部署 MinerU 教程:打造你的本地 PDF 智能处理中心
linux·运维·人工智能·docker·ai·容器·aigc
蜀中廖化29 分钟前
关于架空输电线识别树障or测距相关论文阅读
论文阅读·深度学习·输电线与杆塔·输电线与树木测距
做运维的阿瑞33 分钟前
鸿蒙6.0技术解析:五大行业迎来的智能化革命
人工智能·harmonyos
双向3335 分钟前
技术引领场景革新|合合信息PRCV论坛聚焦多模态文本智能前沿实践
人工智能
孤狼灬笑42 分钟前
自然语言处理(NLP)—发展历程(背景、技术、优缺点、未来方向)
人工智能·自然语言处理·nlp