四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)

文章内容结构:

一. 先介绍什么是Annoy算法。
二. 用Annoy算法建树的完整代码。
三. 用Annoy建树后的树特征匹配聚类归类图像。

一. 先介绍什么是Annoy算法

下面的文章链接将Annoy算法讲解的很详细,这里就不再做过多原理的分析了,想详细了解的可以看看这篇文章内容。

https://zhuanlan.zhihu.com/p/148819536

总的来说:

(1)通过多次递归迭代,建立一个二叉树,以二叉树的方式,提升数据聚类和搜索速度,但会损失一些精度。

(2)建树过程相对比较耗时,但建树只需要一次,部署到线上或者其他设备上,能无数次聚类搜索。(类似于人脸识别的人脸底库)

(注: 这里全部是个人经验,能提升样本标注和清洗效率,不是标准的数据处理方式,希望对您有帮助。)


二. 用Annoy算法建树的完整代码

对底库聚类建树,生成Annoy树特征文件。

下面参数说明:

python 复制代码
最佳聚类类别数量, 是根据《三.以聚类的方式清洗图像数据集,找到最佳聚类类别数 (图像特征提取+Kmeans聚类)》获取得到
BEST_NUM_CLUSTERS = 2501


图像特征提取后的向量维度,是pt或者onnx模型输出的类别数
FEATURE_DIM = 190


推断图像尺寸,是根据训练pt模型时,输入的图像尺寸大小
CLASSIFY_SIZE = 224  

以下是正式的代码:

python 复制代码
import os
import cv2
import numpy as np
from PIL import Image
import onnxruntime as ort
import shutil
from sklearn.cluster import KMeans
from sklearn.preprocessing import Normalizer
from  tqdm import tqdm
import math
import matplotlib.pyplot as plt

# 图像预处理函数
def preprocess_image(image_path):

    roi_frame= cv2.imread(image_path)
    width = roi_frame.shape[1]
    height = roi_frame.shape[0]

    if (width != CLASSIFY_SIZE) or (height != CLASSIFY_SIZE) :

                if width > height:
                    # 将图像逆时针旋转90度
                    roi_frame = cv2.rotate(roi_frame, cv2.ROTATE_90_COUNTERCLOCKWISE)

                new_height = CLASSIFY_SIZE
                new_width = int(roi_frame.shape[1] * (CLASSIFY_SIZE / roi_frame.shape[0]))

                roi_frame = cv2.resize(roi_frame, (new_width, new_height))

                # 计算上下左右漂移量
                y_offset = (CLASSIFY_SIZE - roi_frame.shape[0]) // 2
                x_offset = (CLASSIFY_SIZE - roi_frame.shape[1]) // 2

                gray_image = np.full((CLASSIFY_SIZE, CLASSIFY_SIZE, 3), 128, dtype=np.uint8)
                # 将调整大小后的目标图像放置到灰度图上
                gray_image[y_offset:y_offset + roi_frame.shape[0], x_offset:x_offset + roi_frame.shape[1]] = roi_frame

                # # 显示结果
                # cv2.imshow("gray_image", gray_image)
                # cv2.waitKey(1)

                # 将图像转为 rgb
                gray_image =  cv2.cvtColor(gray_image, cv2.COLOR_BGR2RGB)

    else:
        gray_image = cv2.cvtColor(roi_frame, cv2.COLOR_BGR2RGB)


    img_np = np.array(gray_image).transpose(2, 0, 1).astype(np.float32)

    # 假设模型需要[0,1]归一化
    img_np = img_np / 255.0

    # 均值 方差
    mean = np.array([0.485, 0.456, 0.406],dtype=np.float32).reshape(3, 1, 1)
    std = np.array([0.229, 0.224, 0.225],dtype=np.float32).reshape(3, 1, 1)

    img_np= (img_np - mean)/std

    return np.expand_dims(img_np, axis=0)



# 卸载 onnxruntime
# 安装  pip install onnxruntime-gpu
def get_onnx_providers():

    # 检查是否安装了GPU版本的ONNX Runtime
    all_provider = ort.get_available_providers()

    if "CUDAExecutionProvider" in all_provider:
        providers = [
            ("CUDAExecutionProvider", {
                "device_id": 0,
                "arena_extend_strategy": "kNextPowerOfTwo",
                "gpu_mem_limit": 6 * 1024 * 1024 * 1024,  # 限制GPU内存使用为2GB
                "cudnn_conv_algo_search": "EXHAUSTIVE",
                "do_copy_in_default_stream": True,
            }),
            "CPUExecutionProvider"
        ]

        print("检测到NVIDIA GPU,使用CUDA加速")
        return providers
    else:
        print("未检测到NVIDIA GPU,使用CPU")
        return ["CPUExecutionProvider"]



if __name__ =="__main__":

    root_path =  "/home/xxx/Download"
    # ONNX模型路径
    MODEL_PATH = os.path.join(root_path, "08以图搜图_找相似度/98_weights/classify_modified_model_224.onnx")
    # 图像文件夹路径
    IMAGE_DIR = os.path.join(root_path, "08以图搜图_找相似度/99_test_datasets/8_bcd已验收/8")
    # 分类结果输出路径
    OUTPUT_DIR = os.path.join(root_path, "08以图搜图_找相似度/99_test_datasets/8_bcd已验收/8_kmeans_besk_k_classify")
    # 保存ann建树文件路径
    ANNOY_PATH = "08以图搜图_找相似度/01kmeans和DBscan/kmeans/annoy_cls.ann"
    # 最佳聚类类别数量(用kmeans和inner找到的)
    BEST_NUM_CLUSTERS = 2501
    # 图像特征提取后的向量维度
    FEATURE_DIM = 190  # 根据自己的模型输出维度修改
    # 推断图像尺寸
    CLASSIFY_SIZE = 224
    # 手动划分分类数量
    # NUM_CLUSTERS = 3000



    # 创建输出文件夹
    os.makedirs(OUTPUT_DIR, exist_ok=True)



    print("ONNX Runtime版本:", ort.__version__)
    print("可用执行器:", ort.get_available_providers())

    #   可用执行器: ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'AzureExecutionProvider', 'CPUExecutionProvider']

    # 加载ONNX模型(动态获取输入/输出名称)
    ort_session = ort.InferenceSession(
        MODEL_PATH,
        providers=get_onnx_providers()
    )


    # 确保输出名称正确
    input_name = ort_session.get_inputs()[0].name

    output_name = ort_session.get_outputs()[0].name

    from annoy import AnnoyIndex
    t = AnnoyIndex(FEATURE_DIM, metric="angular")  # FEATURE_DIM是图像特征提取后的向量维度

    # 提取特征向量
    features = []
    image_paths = []

    print("====开始对所有图像推理, 提取特征====")
    for index, filename in tqdm(enumerate(os.listdir(IMAGE_DIR))):
        if filename.lower().endswith((".png", ".jpg", ".jpeg")):
            path = os.path.join(IMAGE_DIR, filename)
            try:
                # 前处理
                input_tensor = preprocess_image(path)
                # 推断
                feature = ort_session.run([output_name], {input_name: input_tensor})[0]
                # 确保特征展平为1D,  190维度
                features.append(feature.reshape(-1))
                image_paths.append(path)

                # 增加到Annoy树
                t.add_item(index, feature.reshape(-1))
               
            except Exception as e:
                print(f"Error processing {filename}: {str(e)}")

    t.build(BEST_NUM_CLUSTERS)    # 根据kmeans聚类找到最佳的聚类类别数量
    t.save(ANNOY_PATH)
    print("+++++提取特征结束+++++")
    print("+++++Annoy建树结束+++++++++")

生成建树annoy_cls.ann文件。

三. 用Annoy建树后的树特征匹配聚类归类图像

使用流程:

(1)加载ann建树文件

(2)提取单张A图像特征

(3)单张A图像特征与ann建树文件的特征进行比对,找到ann建树文件里面的与A图像特征相似的TOP_K的底库图像,拷贝走或者移动走。

python 复制代码
import os
import cv2
import numpy as np
from PIL import Image
import onnxruntime as ort
import shutil
from sklearn.cluster import KMeans
from sklearn.preprocessing import Normalizer
from  tqdm import tqdm
import math
import matplotlib.pyplot as plt


# 图像预处理函数
def preprocess_image(image_path):

    roi_frame= cv2.imread(image_path)
    width = roi_frame.shape[1]
    height = roi_frame.shape[0]

    if (width != CLASSIFY_SIZE) or (height != CLASSIFY_SIZE) :

                if width > height:
                    # 将图像逆时针旋转90度
                    roi_frame = cv2.rotate(roi_frame, cv2.ROTATE_90_COUNTERCLOCKWISE)

                new_height = CLASSIFY_SIZE
                new_width = int(roi_frame.shape[1] * (CLASSIFY_SIZE / roi_frame.shape[0]))

                roi_frame = cv2.resize(roi_frame, (new_width, new_height))

                # 计算上下左右漂移量
                y_offset = (CLASSIFY_SIZE - roi_frame.shape[0]) // 2
                x_offset = (CLASSIFY_SIZE - roi_frame.shape[1]) // 2

                gray_image = np.full((CLASSIFY_SIZE, CLASSIFY_SIZE, 3), 128, dtype=np.uint8)
                # 将调整大小后的目标图像放置到灰度图上
                gray_image[y_offset:y_offset + roi_frame.shape[0], x_offset:x_offset + roi_frame.shape[1]] = roi_frame

                # # 显示结果
                # cv2.imshow("gray_image", gray_image)
                # cv2.waitKey(1)

                # 将图像转为 rgb
                gray_image =  cv2.cvtColor(gray_image, cv2.COLOR_BGR2RGB)

    else:
        gray_image = cv2.cvtColor(roi_frame, cv2.COLOR_BGR2RGB)


    img_np = np.array(gray_image).transpose(2, 0, 1).astype(np.float32)

    # 假设模型需要[0,1]归一化
    img_np = img_np / 255.0

    # 均值 方差
    mean = np.array([0.485, 0.456, 0.406],dtype=np.float32).reshape(3, 1, 1)
    std = np.array([0.229, 0.224, 0.225],dtype=np.float32).reshape(3, 1, 1)

    img_np= (img_np - mean)/std

    return np.expand_dims(img_np, axis=0)





# todo
# 卸载 onnxruntime
# 安装  pip install onnxruntime-gpu
def get_onnx_providers():

    # 检查是否安装了GPU版本的ONNX Runtime
    all_provider = ort.get_available_providers()

    if "CUDAExecutionProvider" in all_provider:
        providers = [
            ("CUDAExecutionProvider", {
                "device_id": 0,
                "arena_extend_strategy": "kNextPowerOfTwo",
                "gpu_mem_limit": 6 * 1024 * 1024 * 1024,  # 限制GPU内存使用为2GB
                "cudnn_conv_algo_search": "EXHAUSTIVE",
                "do_copy_in_default_stream": True,
            }),
            "CPUExecutionProvider"
        ]

        print("检测到NVIDIA GPU,使用CUDA加速")
        return providers
    else:
        print("未检测到NVIDIA GPU,使用CPU")
        return ["CPUExecutionProvider"]



if __name__ =="__main__":

    root_path =  "/home/xxx/Download"
    # ONNX模型路径
    MODEL_PATH = os.path.join(root_path, "08以图搜图_找相似度/98_weights/classify_modified_model_224.onnx")
    # 图像文件夹路径
    IMAGE_DIR = os.path.join(root_path, "08以图搜图_找相似度/99_test_datasets/8_bcd已验收/8")
    # 分类结果输出路径
    OUTPUT_DIR = os.path.join(root_path, "08以图搜图_找相似度/99_test_datasets/8_bcd已验收/8_kmeans_besk_k_classify")
    # 保存annoy建树路径
    ANNOY_PATH = os.path.join(root_path, "08以图搜图_找相似度/01kmeans和DBscan/kmeans/annoy_cls.ann")
    # 最佳聚类类别数量
    BEST_NUM_CLUSTERS = 2501
    # 图像特征提取后的向量维度
    FEATURE_DIM = 190
    # 推断图像尺寸
    CLASSIFY_SIZE = 224
    # 取top10
    TOP_K = 10
    # 手动划分分类数量
    # NUM_CLUSTERS = 3000



    # 创建输出文件夹
    os.makedirs(OUTPUT_DIR, exist_ok=True)



    print("ONNX Runtime版本:", ort.__version__)
    print("可用执行器:", ort.get_available_providers())

    #   可用执行器: ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'AzureExecutionProvider', 'CPUExecutionProvider']

    # 加载ONNX模型(动态获取输入/输出名称)
    ort_session = ort.InferenceSession(
        MODEL_PATH,
        providers=get_onnx_providers()
    )


    # 确保输出名称正确
    input_name = ort_session.get_inputs()[0].name

    output_name = ort_session.get_outputs()[0].name

    from annoy import AnnoyIndex
    Annoy_ = AnnoyIndex(FEATURE_DIM, metric="angular")  # FEATURE_DIM是图像特征提取后的向量维度
    Annoy_.load(ANNOY_PATH) 

    # 提取特征向量
    features = []
    image_paths = []

    # 获取所有图像路径
    for _, filename in tqdm(enumerate(os.listdir(IMAGE_DIR))):
        if filename.lower().endswith((".png", ".jpg", ".jpeg")):
            path = os.path.join(IMAGE_DIR, filename)
            image_paths.append(path)


    print("====开始对所有图像推理, 提取特征, 根据创建的树进行聚类====")
    for _, filename in tqdm(enumerate(os.listdir(IMAGE_DIR))):
        if filename.lower().endswith((".png", ".jpg", ".jpeg")):
            path = os.path.join(IMAGE_DIR, filename)
            try:
                # 前处理
                input_tensor = preprocess_image(path)
                # 推断
                feature = ort_session.run([output_name], {input_name: input_tensor})[0]
                # 确保特征展平为1D,  190维度
                features.append(feature.reshape(-1))
                # image_paths.append(path)
                # 取top10的相似图像
                similar_img_indices, similar_img_distances=Annoy_.get_nns_by_vector(feature.reshape(-1), TOP_K, include_distances=True)
                print("similar_img_index:", similar_img_indices)
                print("similar_img_distance:", similar_img_distances)

                shutil.copy(path, os.path.join(OUTPUT_DIR,"11"))
                #  移动相似图像到输出目录
                for idx in similar_img_indices:
                    similar_image_path = image_paths[idx]
                    # shutil.move(similar_image_path, OUTPUT_DIR)
                    shutil.copy(similar_image_path, OUTPUT_DIR)

               
            except Exception as e:
                print(f"Error processing {filename}: {str(e)}")

    print("+++++提取特征结束+++++")
    print("+++++根据Annoy数特征聚类归类图像结束+++++++++")
相关推荐
子午6 分钟前
【2026原创】中草药识别系统实现~Python+深度学习+模型训练+人工智能
人工智能·python·深度学习
!停15 分钟前
C语言单链表
c语言·数据结构·算法
人工小情绪23 分钟前
深度学习模型部署形式
人工智能·深度学习
闻缺陷则喜何志丹26 分钟前
【回文 字符串】3677 统计二进制回文数字的数目|2223
c++·算法·字符串·力扣·回文
乾元26 分钟前
如何把 CCIE / HCIE 的实验案例改造成 AI 驱动的工程项目——从“实验室能力”到“可交付系统”的完整迁移路径
大数据·运维·网络·人工智能·深度学习·安全·机器学习
kisshuan1239627 分钟前
【深度学习】【目标检测】基于Mask R-CNN的鱼类尾巴检测与识别
深度学习·目标检测·r语言
DatGuy31 分钟前
Week 32: 深度学习补遗:Agent的认知架构、记忆系统与高阶规划
人工智能·深度学习
Tisfy32 分钟前
LeetCode 0085.最大矩形:单调栈
算法·leetcode·题解·单调栈
mit6.82434 分钟前
出入度|bfs|状压dp
算法
hweiyu0035 分钟前
强连通分量算法:Kosaraju算法
算法·深度优先