如何成为-10x工程师:反向教学大数据开发实际工作中应如何做

+10x 工程师可能是神话,但 -10x 工程师确实存在。要成为 -10x 工程师,只需每周浪费 400 小时的工程时间。结合以下策略:

目录

如何使 10 名工程师的输出无效化

改变需求

尽可能在开发后期更改需求。为了避免责备,从一开始就模糊需求。

python 复制代码
# 确保需求模糊不清
def get_user_input():
    return "用户的输入可能是这个,也可能是那个..."

def process_input(input):
    # 处理用户输入,可能会有所不同
    if input == "这个":
        return "处理了这个"
    else:
        return "处理了那个"

input = get_user_input()
output = process_input(input)
print(output)

大数据开发示例

在一个大数据开发项目中,可以不断更改数据处理管道的需求,使团队无法按时完成任务。

python 复制代码
# 更改数据处理需求
def data_pipeline_v1(data):
    return data.upper()

def data_pipeline_v2(data):
    return data.lower()

def data_pipeline_v3(data):
    return data.title()

# 开发后期不断更改需求
data = "example data"
pipeline = data_pipeline_v3  # 需求从 v1 到 v2 最后到 v3
output = pipeline(data)
print(output)

创建 400 小时的繁忙工作

任务示例

要求团队执行类似工作的任务。常见示例包括演示文稿、图表和票务管理。创建无意义的仪式。

python 复制代码
# 创建无用的工作
def create_presentation():
    return "创建了一个无用的演示文稿"

def create_diagram():
    return "创建了一个无用的图表"

def manage_tickets():
    return "管理了一些无用的票务"

tasks = [create_presentation(), create_diagram(), manage_tickets()]
for task in tasks:
    print(task)

大数据开发示例

在大数据项目中,可以要求团队不断生成 ETL 流程的流程图和文档,而不关注实际数据处理的效率。

python 复制代码
# 创建无用的 ETL 流程图
def create_etl_flowchart():
    return "创建了一个无用的 ETL 流程图"

# 编写无意义的文档
def write_etl_documentation():
    return "编写了一份无人使用的 ETL 文档"

tasks = [create_etl_flowchart(), write_etl_documentation()]
for task in tasks:
    print(task)

创建 400 小时的倦怠/离职

示例代码

python 复制代码
# 确保团队感到沮丧
def blame_team_member(member):
    return f"责备了团队成员 {member}"

def cause_confusion():
    return "制造了混乱"

team_members = ["Alice", "Bob", "Charlie"]
for member in team_members:
    print(blame_team_member(member))
print(cause_confusion())

大数据开发示例

在大数据团队中,通过不断增加不必要的任务和无效的会议,使团队成员感到沮丧和混乱。

python 复制代码
# 增加不必要的任务
def add_unnecessary_task(task):
    return f"增加了不必要的任务 {task}"

# 安排无效的会议
def schedule_useless_meeting(meeting):
    return f"安排了无效的会议 {meeting}"

tasks = ["任务1", "任务2", "任务3"]
meetings = ["会议1", "会议2", "会议3"]

for task in tasks:
    print(add_unnecessary_task(task))
for meeting in meetings:
    print(schedule_useless_meeting(meeting))

在技术讨论中扣留 10 名工程师

示例代码

python 复制代码
# 扣留工程师在技术讨论中
def discuss_idea(idea):
    return f"讨论了想法 {idea},但没有做出任何决定"

ideas = ["想法1", "想法2", "想法3"]
for idea in ideas:
    print(discuss_idea(idea))

大数据开发示例

在大数据项目中,鼓励团队成员就数据架构进行无休止的讨论,而不采取任何实际行动。

python 复制代码
# 数据架构无休止讨论
def discuss_data_architecture(architecture):
    return f"讨论了数据架构 {architecture},但没有做出任何决定"

architectures = ["架构1", "架构2", "架构3"]
for architecture in architectures:
    print(discuss_data_architecture(architecture))

增加 400 小时的沟通开销

示例代码

python 复制代码
# 通过会议浪费时间
def hold_meeting(topic):
    return f"召开了关于 {topic} 的会议,浪费了时间"

meetings = ["主题1", "主题2", "主题3"]
for meeting in meetings:
    print(hold_meeting(meeting))

大数据开发示例

安排大量不必要的会议,讨论大数据处理管道的细节,而不是实际解决问题。

python 复制代码
# 安排不必要的会议
def schedule_unnecessary_meeting(topic):
    return f"安排了不必要的会议讨论 {topic}"

topics = ["大数据处理管道细节1", "大数据处理管道细节2", "大数据处理管道细节3"]
for topic in topics:
    print(schedule_unnecessary_meeting(topic))

将 10 周工资浪费在云成本上

示例代码

python 复制代码
# 编写缓慢的程序
def slow_function():
    for i in range(10000000):
        pass
    return "运行了缓慢的函数"

print(slow_function())

大数据开发示例

在大数据项目中,编写效率低下的代码,增加云成本,如不使用数据库索引或在大数据集上运行单线程程序。

python 复制代码
# 编写效率低下的代码
def inefficient_data_processing(data):
    # 不使用索引进行查找
    result = [item for item in data if item == "目标值"]
    return result

data = ["值1", "值2", "目标值", "值3"]
output = inefficient_data_processing(data)
print(output)

创建无用工具

示例代码

python 复制代码
# 创建只有一个人理解的脚本
def obscure_script():
    return "创建了一个只有一个人理解的脚本"

print(obscure_script())

大数据开发示例

开发一个复杂的 ETL 工具,只有开发者自己能够理解和维护,其他团队成员无法使用或修改。

python 复制代码
# 创建复杂的 ETL 工具


def complex_etl_tool(data):
    # 只有一个人理解的复杂逻辑
    result = data[::-1]  # 例如,反转数据
    return result

data = ["数据1", "数据2", "数据3"]
output = complex_etl_tool(data)
print(output)

增加 400 小时的编译/构建时间

示例代码

python 复制代码
# 确保构建时间缓慢
def slow_build():
    import time
    time.sleep(20)  # 增加编译时间
    return "完成了缓慢的构建"

print(slow_build())

大数据开发示例

在大数据项目中,使用复杂的构建工具和脚本,增加构建和部署的时间,使开发过程变得缓慢而低效。

python 复制代码
# 使用复杂的构建工具
def complex_build_tool():
    import time
    time.sleep(20)  # 增加构建时间
    return "使用了复杂的构建工具"

print(complex_build_tool())

编写无意义的测试

示例代码

python 复制代码
# 编写无意义的测试
def pointless_test():
    import random
    result = random.choice([True, False])
    return f"测试{'成功' if result else '失败'},但没有意义"

print(pointless_test())

大数据开发示例

编写无意义的单元测试,不测试数据处理管道的实际功能,只关注表面的变量变化。

python 复制代码
# 编写无意义的单元测试
def meaningless_unit_test():
    data = ["数据1", "数据2", "数据3"]
    # 只测试变量存在与否,而不测试实际功能
    assert data is not None, "数据为空"
    return "无意义的单元测试通过"

print(meaningless_unit_test())

在糟糕的架构上浪费 400 小时

示例代码

python 复制代码
# 忽视系统设计的演变
def poor_architecture():
    return "设计了一个忽视系统演变的糟糕架构"

print(poor_architecture())

大数据开发示例

在大数据项目中,设计一个无法扩展或维护的糟糕数据架构,导致未来的开发和维护变得非常困难。

python 复制代码
# 设计无法扩展的架构
def unscalable_data_architecture(data):
    # 使用硬编码方式处理数据
    if "特殊值" in data:
        return "处理了特殊值"
    else:
        return "未处理特殊值"

data = ["普通值", "特殊值"]
output = unscalable_data_architecture(data)
print(output)

浪费 400 小时在部署上

示例代码

python 复制代码
# 创建多个环境
def create_environments():
    environments = ["生产环境", "预发布环境", "测试环境"]
    return f"创建了多个环境:{', '.join(environments)}"

print(create_environments())

大数据开发示例

在大数据项目中,创建多个环境,且这些环境之间存在巨大差异,导致部署过程变得复杂且容易出错。

python 复制代码
# 创建多个差异巨大的环境
def create_varied_environments():
    environments = ["生产环境", "预发布环境", "测试环境"]
    differences = {
        "生产环境": "使用 Oracle 数据库",
        "预发布环境": "使用 MySQL 数据库",
        "测试环境": "使用 SQLite 数据库"
    }
    return f"创建了多个差异巨大的环境:{differences}"

print(create_varied_environments())

将 10 周工资浪费在不满意的客户上

示例代码

python 复制代码
# 忽视严重的 bug
def ignore_severe_bugs():
    return "忽视了严重的 bug"

print(ignore_severe_bugs())

大数据开发示例

在大数据项目中,忽视数据处理管道中的严重 bug,导致客户对系统的不满,进而浪费大量时间和资源来修复和补救。

python 复制代码
# 忽视数据处理中的严重 bug
def process_data_with_bugs(data):
    # 假设存在严重 bug,但忽视它
    if "错误值" in data:
        return "处理了错误值,但存在严重 bug"
    else:
        return "数据处理正常"

data = ["数据1", "错误值", "数据3"]
output = process_data_with_bugs(data)
print(output)

编写无用的文档

示例代码

python 复制代码
# 编写无用的文档
def useless_documentation():
    return "编写了一份无人使用的 wiki"

print(useless_documentation())

大数据开发示例

编写无人使用的大数据处理流程文档,内容冗长且没有实际指导意义,团队成员无法从中获得帮助。

python 复制代码
# 编写无用的文档
def write_useless_big_data_docs():
    return "编写了一份冗长的大数据处理流程文档,没有实际指导意义"

print(write_useless_big_data_docs())

让 10 名工程师陷入徒劳的"特殊项目"

示例代码

python 复制代码
# 吸引优秀工程师但浪费其潜力
def futile_skunkworks_project():
    return "吸引了优秀工程师,但浪费了他们的潜力"

print(futile_skunkworks_project())

大数据开发示例

在大数据项目中,吸引优秀的工程师参与一个不切实际且毫无实际价值的项目,浪费他们的时间和精力。

python 复制代码
# 吸引工程师参与无用项目
def attract_engineers_to_futile_project():
    engineers = ["优秀工程师1", "优秀工程师2", "优秀工程师3"]
    project = "不切实际的大数据项目"
    return f"吸引了{', '.join(engineers)}参与{project},浪费了他们的时间和精力"

print(attract_engineers_to_futile_project())

添加需要 400 小时维护的依赖

示例代码

python 复制代码
# 每个库都单独学习
def learn_library(library):
    return f"单独学习了库 {library}"

libraries = ["库1", "库2", "库3"]
for library in libraries:
    print(learn_library(library))

大数据开发示例

在大数据项目中,添加多个复杂且难以维护的依赖库,每个库都需要工程师单独学习和维护,增加了项目的复杂性和维护成本。

python 复制代码
# 添加复杂依赖库
def add_complex_dependencies():
    dependencies = ["复杂库1", "复杂库2", "复杂库3"]
    return f"添加了多个复杂且难以维护的依赖库:{', '.join(dependencies)}"

print(add_complex_dependencies())

延迟转向

示例代码

python 复制代码
# 沉没成本
def sunk_cost_fallacy():
    return "坚持沉没成本,延迟转向"

print(sunk_cost_fallacy())

大数据开发示例

在大数据项目中,明知当前技术栈或架构已经不适合继续发展,但由于沉没成本,仍然坚持不做任何改变,导致项目陷入困境。

python 复制代码
# 坚持使用不合适的技术栈
def stick_to_unsuitable_tech_stack():
    tech_stack = ["不合适的技术1", "不合适的技术2", "不合适的技术3"]
    return f"坚持使用不合适的技术栈:{', '.join(tech_stack)},导致项目陷入困境"

print(stick_to_unsuitable_tech_stack())

雇佣 10 名 0x 工程师

示例代码

python 复制代码
# 雇佣没有贡献的工程师
def hire_0x_engineer(engineer):
    return f"雇佣了 0x 工程师 {engineer}"

engineers = ["工程师1", "工程师2", "工程师3"]
for engineer in engineers:
    print(hire_0x_engineer(engineer))

大数据开发示例

在大数据项目中,雇佣一些无法对项目做出任何实质性贡献的工程师,浪费资源。

python 复制代码
# 雇佣没有贡献的工程师
def hire_unproductive_big_data_engineers():
    engineers = ["工程师A", "工程师B", "工程师C"]
    return f"雇佣了一些无法对项目做出实质性贡献的大数据工程师:{', '.join(engineers)}"

print(hire_unproductive_big_data_engineers())

雇佣 5 名 -1x 工程师

示例代码

python 复制代码
# 雇佣造成灾难的工程师
def hire_negative1x_engineer(engineer):
    return f"雇佣了 -1x 工程师 {engineer}"

engineers = ["工程师A", "工程师B", "工程师C"]
for engineer in engineers:
    print(hire_negative1x_engineer(engineer))

大数据开发示例

在大数据项目中,雇佣一些不仅无法贡献,反而会制造问题和灾难的工程师,拖累整个项目的进度和质量。

python 复制代码
# 雇佣制造问题的工程师
def hire_disastrous_big_data_engineers():
    engineers = ["工程师X", "工程师Y", "工程师Z"]
    return f"雇佣了一些制造问题和灾难的大数据工程师:{', '.join(engineers)}"

print(hire_disastrous_big_data_engineers())

防止 10 名 -1x 工程师被解雇

示例代码

python 复制代码
# 保住不合格的工程师
def retain_incompetent_engineer(engineer):
    return f"保住了不合格的工程师 {engineer}"

engineers = ["不合格工程师1", "不合格工程师2", "不合格工程师3"]
for engineer in engineers:
    print(retain_incompetent_engineer(engineer))

大数据开发示例

在大数据项目中,保住一些不合格甚至是有害的工程师,不愿采取任何措施来改善团队质量和项目进度。

python 复制代码
# 保住不合格的大数据工程师
def retain_incompetent_big_data_engineers():
    engineers = ["不合格工程师A", "不合格工程师B", "不合格工程师C"]
    return f"保住了一些不合格的大数据工程师:{', '.join(engineers)}"

print(retain_incompetent_big_data_engineers())

花费 400 小时在 bug 归类上

示例代码

python 复制代码
# 创建难以调试的程序
def create_undebuggable_program():
    return "创建了一个难以调试的程序"

print(create_undebuggable_program())

大数据开发示例

在大数据项目中,编写难以调试的复杂代码,层层抽象,使得调试和修复 bug 变得极其困难和耗时。

python 复制代码
# 编写难以调试的复杂代码
def write_complex_undebuggable_code():
    code = """
def process_data(data):
    # 层层抽象,难以调试
    def inner_process(data_chunk):
        # 复杂逻辑,难以跟踪
        return data_chunk[::-1]
    
    return [inner_process(chunk) for chunk in data]

data = ["数据1", "数据2", "数据3"]
output = process_data(data)
print(output)
    """
    return code

print(write_complex_undebuggable_code())

以上示例展示了如何在大数据开发中通过一系列策略成为-10x工程师,浪费时间、资源和精力,使项目陷入困境。希望这些反面教材能帮助大家避免类似的错误。

相关推荐
JessieZeng aaa1 小时前
CSV文件数据导入hive
数据仓库·hive·hadoop
Java 第一深情3 小时前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
MXsoft6183 小时前
华为服务器(iBMC)硬件监控指标解读
大数据·运维·数据库
PersistJiao3 小时前
Spark 分布式计算中网络传输和序列化的关系(二)
大数据·网络·spark·序列化·分布式计算
九河云4 小时前
如何对AWS进行节省
大数据·云计算·aws
FreeIPCC4 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
梦幻通灵4 小时前
ES分词环境实战
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客5 小时前
Elasticsearch 中的热点以及如何使用 AutoOps 解决它们
大数据·运维·elasticsearch·搜索引擎·全文检索
天冬忘忧5 小时前
Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化
大数据·分布式·kafka
sevevty-seven6 小时前
幻读是什么?用什么隔离级别可以防止幻读
大数据·sql