双向长短期记忆神经网络BiLSTM

先说一下LSTM

LSTM 是一种特殊的 RNN,它通过引入门控机制来解决传统 RNN 的长期依赖问题。

LSTM 的结构包含以下几个关键组件:

  1. 输入门(input gate):决定当前时间步的输入信息对细胞状态的影响程度。
  2. 遗忘门(forgetgate):决定上一个时间步的细胞状态对当前时间步的影响程度。
  3. 细胞状态(cell state):用于在不同时间步之间传递和存储信息。
  4. 输出门(output gate):决定细胞状态对当前时间步的输出影响程度。
  5. 隐藏状态(hiddenstate):当前时间步的输出,也是下一个时间步的输入。

LSTM内部工作原理:

我们假设:h为LSTM单元的隐藏层输出,c为LSTM内存单元的值,x为输入数据。

  • 1、计算遗忘门的值𝑓**(𝑡)

  • 2、 计算当前时刻的输入结点*𝑔**(𝑡)g_((t)),𝑊(𝑥𝑔)W_((xg)),𝑊(h𝑔)W_((hg)),𝑊(𝑐𝑔)*W_((cg))分别是输入数据和上一时刻LSTM 单元输出的权值:

  • 3、计算输入门 (input gate) 的值*𝑖**(𝑡)*i_((t))。输入门用来控制当前输入数据对记忆单元状态值的影响。

  • 4、计算当前时刻记忆单元的状态值*𝑐**(𝑡)*c_((t))。

  • 5、计算输出门*𝑜**(𝑡)*o_((t))。输出门用来控制记忆单元状态值的输出。

  • 6、最后计算LSTM单元的输出。

长短期记忆神经网络(LSTM)的计算公式:

双向长短期记忆神经网络

双向长短期记忆神经网络(BiLSTM)的计算公式:

Bidirectional Long Short-Term Memory, BiLSTM

它是传统长短期记忆网络(Long Short-Term Memory, LSTM)的一种扩展形式,结合了正向LSTM和反向LSTM来获取更完整的上下文信息。从而通过BiLSTM可以更好的捕捉双向的语义依赖.

BiLSTM通过添加一个反向层来实现双向读取。具体而言,它使用两个LSTM网络,一个按照正向顺序处理输入序列,另一个按照反向顺序处理输入序列。这样,在每个时间步骤,每个LSTM单元都能够同时访问前面和后面的上下文信息。

相关推荐
IT_陈寒12 分钟前
JavaScript性能优化:10个V8引擎隐藏技巧让你的代码快30%
前端·人工智能·后端
Dev7z25 分钟前
基于图像处理技术的智能答题卡识别与评分系统设计与实现
图像处理·人工智能
掘金安东尼35 分钟前
本地模型 + 云端模型的 Hybrid Inference 架构设计:下一代智能系统的底层范式
人工智能
强盛小灵通专卖员35 分钟前
煤矿传送带异物检测:深度学习引领煤矿安全新革命!
人工智能·目标检测·sci·研究生·煤矿安全·延毕·传送带
学历真的很重要44 分钟前
PyTorch 零基础入门:从张量到 GPU 加速完全指南
人工智能·pytorch·后端·深度学习·语言模型·职场和发展
mit6.8241 小时前
[Column] Perplexity 如何构建 AI 版 Google | 模型无关架构 | Vespa AI检索
人工智能
xier_ran1 小时前
深度学习:梯度检验(Gradient Checking)
人工智能·深度学习·梯度检验
B站_计算机毕业设计之家1 小时前
python手写数字识别计分系统+CNN模型+YOLOv5模型 深度学习 计算机毕业设计(建议收藏)✅
python·深度学习·yolo·计算机视觉·数据分析·cnn
尼古拉斯·纯情暖男·天真·阿玮1 小时前
基于卷积神经网络的手写数字识别
人工智能·神经网络·cnn
2401_841495641 小时前
MoE算法深度解析:从理论架构到行业实践
人工智能·深度学习·机器学习·自然语言处理·大语言模型·moe·混合专家模型