双向长短期记忆神经网络BiLSTM

先说一下LSTM

LSTM 是一种特殊的 RNN,它通过引入门控机制来解决传统 RNN 的长期依赖问题。

LSTM 的结构包含以下几个关键组件:

  1. 输入门(input gate):决定当前时间步的输入信息对细胞状态的影响程度。
  2. 遗忘门(forgetgate):决定上一个时间步的细胞状态对当前时间步的影响程度。
  3. 细胞状态(cell state):用于在不同时间步之间传递和存储信息。
  4. 输出门(output gate):决定细胞状态对当前时间步的输出影响程度。
  5. 隐藏状态(hiddenstate):当前时间步的输出,也是下一个时间步的输入。

LSTM内部工作原理:

我们假设:h为LSTM单元的隐藏层输出,c为LSTM内存单元的值,x为输入数据。

  • 1、计算遗忘门的值𝑓**(𝑡)

  • 2、 计算当前时刻的输入结点*𝑔**(𝑡)g_((t)),𝑊(𝑥𝑔)W_((xg)),𝑊(h𝑔)W_((hg)),𝑊(𝑐𝑔)*W_((cg))分别是输入数据和上一时刻LSTM 单元输出的权值:

  • 3、计算输入门 (input gate) 的值*𝑖**(𝑡)*i_((t))。输入门用来控制当前输入数据对记忆单元状态值的影响。

  • 4、计算当前时刻记忆单元的状态值*𝑐**(𝑡)*c_((t))。

  • 5、计算输出门*𝑜**(𝑡)*o_((t))。输出门用来控制记忆单元状态值的输出。

  • 6、最后计算LSTM单元的输出。

长短期记忆神经网络(LSTM)的计算公式:

双向长短期记忆神经网络

双向长短期记忆神经网络(BiLSTM)的计算公式:

Bidirectional Long Short-Term Memory, BiLSTM

它是传统长短期记忆网络(Long Short-Term Memory, LSTM)的一种扩展形式,结合了正向LSTM和反向LSTM来获取更完整的上下文信息。从而通过BiLSTM可以更好的捕捉双向的语义依赖.

BiLSTM通过添加一个反向层来实现双向读取。具体而言,它使用两个LSTM网络,一个按照正向顺序处理输入序列,另一个按照反向顺序处理输入序列。这样,在每个时间步骤,每个LSTM单元都能够同时访问前面和后面的上下文信息。

相关推荐
学术小八26 分钟前
2025年人工智能、虚拟现实与交互设计国际学术会议
人工智能·交互·vr
仗剑_走天涯1 小时前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec2 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl3 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji3 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头5 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域5 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊6 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor
12点一刻6 小时前
搭建自动化工作流:探寻解放双手的有效方案(2)
运维·人工智能·自动化·deepseek
未来之窗软件服务6 小时前
东方仙盟AI数据中间件使用教程:开启数据交互与自动化应用新时代——仙盟创梦IDE
运维·人工智能·自动化·仙盟创梦ide·东方仙盟·阿雪技术观