在OpenGL系列(六)变换 中,一个目标物体经过模型矩阵、观察矩阵和投影矩阵的变换才能正常显示出来,其中模型矩阵主要针对目标物体,它会影响物体的位姿。观察矩阵和投影矩阵主要针对观察者而已,这两个变换决定了观察者以怎样的视角观察世界,可以把观察者比作一台摄像机,摄像机拍摄景象的角度由观察矩阵和投影矩阵决定。
在本例中要实现摄像机类Camera,该类主要向外提供观察矩阵和投影矩阵,类定义如下。
class Camera {
public:
Camera();
virtual ~Camera();
glm::mat4 getViewMatrix();
virtual glm::mat4 getProjectionMatrix();
private:
glm::vec3 mPosition = glm::vec3(0.0f,0.0f,1.0f);
glm::vec3 mUp = glm::vec3(0.0f,1.0f,0.0f);
glm::vec3 mRight = glm::vec3(1.0f,0.0f,0.0f);
};
在Camera类主要成员如下。
- mPosition表示摄像机的位置。
- mUp表示摄像机上方的方向。
- mRight表示摄像机右边的方向。
- getViewMatrix返回观察矩阵。
- getProjectionMatrix返回投影矩阵。
投影矩阵有两种,一种是正交投影矩阵,一种是透视投影,因此可以从Camera派生出两个子类,一个是OrthographicCamera表示正交投影摄像机,一个是PerspectiveCamera表示透视投影摄像机。
正交投影摄像机类为OrthographicCamera,定义如下。
class OrthographicCamera: public Camera{
public:
OrthographicCamera(float left,
float right,
float top,
float bottom,
float near,
float far);
~OrthographicCamera();
glm::mat4 getProjectionMatrix() override;
private:
float mLeft{0.0f};
float mRight{0.0f};
float mTop{0.0f};
float mBottom{0.0f};
float mNear{0.0f};
float mFar{0.0f};
};
OrthographicCamera主要成员解析如下。
mLeft、mRight、mTop、mBottom、mNear、mFar分别表示裁剪空间的左、右、上、下、近、远。
getProjectionMatrix重新了父类的方法,返回正交投影摄像机的投影矩阵。
透视投影摄像机类为PerspectiveCamera,定义如下。
class PerspectiveCamera: public Camera{
public:
PerspectiveCamera(float fovy, float aspect, float near, float far);
~PerspectiveCamera();
glm::mat4 getProjectionMatrix() override;
private:
float mFovy{0.0f};
float mAspect{0.0f};
float mNear{0.0f};
float mFar{0.0f};
};
PerspectiveCamera主要成员解析如下。
- mFovy表示视张角
- mAspect表示宽高比
- mNear表示近裁剪面
- mFar表示远裁剪面。
类定义完后,接下来实现返回观察矩阵和投影矩阵。
观察矩阵的计算方法如下。
glm::mat4 Camera::getViewMatrix(){
glm::vec3 front = glm::cross(mUp,mRight);
glm::vec3 center = mPosition + front;
return glm::lookAt(mPosition,center,mUp);
}
观察矩阵的计算步骤如下。
- 对mUp和mRight进行叉乘得到向前的向量
- 当前位置加上向前向量得到观察的中心点,只要沿着该向量向前任何一个点都可以作为观察中心点。
- 通过lookAt返回观察矩阵,第1个参数是摄像机的位置,第2个参数是观察中心点,第3个参数是摄像机向上的向量
正交投影摄像机和透视投影摄像机的观察矩阵是一样的,所以放到父类Camera实现,但是投影矩阵就有差异,所以放到各自子类实现。
正交投影摄像机的投影矩阵实现如下。
glm::mat4 OrthographicCamera::getProjectionMatrix() {
return glm::ortho(mLeft,mRight,mBottom,mTop,mNear,mFar);
}
调用glm的ortho即可返回正交投影矩阵。
透视投影摄像机的投影矩阵实现如下。
glm::mat4 PerspectiveCamera::getProjectionMatrix() {
return glm::perspective(glm::radians(mFovy),mAspect,mNear,mFar);
}
调用glm的perspective可返回投影投影矩阵。
该示例的工程已经上传到,地址如下
在开发过程中,首先要确定射线机的类型,以确定是创建OrthographicCamera对象还是PerspectiveCamera对象,摄像机对象创建好以后,一般不会修改投影矩阵,但是经过修改摄像机的观察角度,通过对Camera的mPosition、mRight和mUp可以改变观察的角度。有以下情况。
修改mPosition可以摄像机的前后左右上下移动。
修改mUp可以实现类似点头的效果。
修改mRight可以实现摇头的效果
同时修改mUp和mRight可以实现观察角度的左右倾斜。
同时修改mPosition和mRight可以实现围绕某个点左右转动,假设围绕转动的点是某个物体的中心点,转动一圈可以观察到物体前后左右4个面
同时修改mPosition和mUp可以实现围绕某个点上下转动,转动一圈可以观察某个物体的上、下、前、后4个面。