Python-天天基金网爬虫分析

1.主题式网络爬虫名称:天天基金网爬虫分析

2.主题式网络爬虫爬取的内容与数据特征分析:通过访问天天基金的网站,爬取相对应的信息,最后保存下来做可视化分析。

3.主题式网络爬虫设计方案概述(包括实现思路与技术难点):

首先,用request进行访问页面。

其次,用xtree来获取页面内容,用etree.xpath进行数据筛选。

最后,文件操作进行数据的保存。

难点:网站的爬取与数据筛选。

1.数据爬取与采集

"""ua大列表"""

USER_AGENT_LIST = [

'Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3451.0 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:57.0) Gecko/20100101 Firefox/57.0',

'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.71 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.2999.0 Safari/537.36',

'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.70 Safari/537.36',

'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.4; en-US; rv:1.9.2.2) Gecko/20100316 Firefox/3.6.2',

'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.155 Safari/537.36 OPR/31.0.1889.174',

'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.1.4322; MS-RTC LM 8; InfoPath.2; Tablet PC 2.0)',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36 OPR/55.0.2994.61',

'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.814.0 Safari/535.1',

'Mozilla/5.0 (Macintosh; U; PPC Mac OS X; ja-jp) AppleWebKit/418.9.1 (KHTML, like Gecko) Safari/419.3',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36',

'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0; Touch; MASMJS)',

'Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.21 (KHTML, like Gecko) Chrome/19.0.1041.0 Safari/535.21',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',

'Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3451.0 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:57.0) Gecko/20100101 Firefox/57.0',

'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.71 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.2999.0 Safari/537.36',

'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.70 Safari/537.36',

'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.4; en-US; rv:1.9.2.2) Gecko/20100316 Firefox/3.6.2',

'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.155 Safari/537.36 OPR/31.0.1889.174',

'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.1.4322; MS-RTC LM 8; InfoPath.2; Tablet PC 2.0)',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36 OPR/55.0.2994.61',

'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.814.0 Safari/535.1',

'Mozilla/5.0 (Macintosh; U; PPC Mac OS X; ja-jp) AppleWebKit/418.9.1 (KHTML, like Gecko) Safari/419.3',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36',

'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0; Touch; MASMJS)',

'Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.21 (KHTML, like Gecko) Chrome/19.0.1041.0 Safari/535.21',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',

'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4093.3 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36 (KHTML, like Gecko; compatible; Swurl) Chrome/77.0.3865.120 Safari/537.36',

'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36',

'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4086.0 Safari/537.36',

'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:75.0) Gecko/20100101 Firefox/75.0',

'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) coc_coc_browser/91.0.146 Chrome/85.0.4183.146 Safari/537.36',

'Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36 VivoBrowser/8.4.72.0 Chrome/62.0.3202.84',

'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 Edg/87.0.664.60',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.16; rv:83.0) Gecko/20100101 Firefox/83.0',

'Mozilla/5.0 (X11; CrOS x86_64 13505.63.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:68.0) Gecko/20100101 Firefox/68.0',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',

'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36 OPR/72.0.3815.400',

'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',

]

2.对数据进行清洗和处理

def \_\_init\_\_(self):
        # 起始的请求地址----初始化
        self.start\_url = 'http://fund.eastmoney.com/fund.html'
        # 第二份数据地址
        self.next\_url = 'http://fund.eastmoney.com/HBJJ\_pjsyl.html'

    def parse\_start\_url(self):
        """
        发送请求,获取响应
        :return:
        """
        # 请求头
        headers = {
            # 通过随机模块提供的随机拿取数据方法
            'User-Agent': random.choice(USER\_AGENT\_LIST)
        }
        # 发送请求,获取响应字节数据
        response = session.get(self.start\_url, headers=headers).content
        """序列化对象,将字节内容数据,经过转换,变成可进行xpath操作的对象"""
        response \= etree.HTML(response)
        """调用提取第二份响应数据"""
        self.parse\_next\_url\_response(response)

    def parse\_next\_url\_response(self, response\_1):
        """
        解析第二个数据页地址
        :return:
        """
        # 请求头
        headers = {
            # 通过随机模块提供的随机拿取数据方法
            'User-Agent': random.choice(USER\_AGENT\_LIST)
        }
        # 发送请求,获取响应字节数据
        response = session.get(self.start\_url, headers=headers).content
        """序列化对象,将字节内容数据,经过转换,变成可进行xpath操作的对象"""
        response \= etree.HTML(response)
        """调用解析response响应数据方法"""
        self.parse\_response\_data(response, response\_1)

    def parse\_response\_data(self, response\_1, response):
        """
        解析response响应数据,提取
        :return:
        """
        # 股票名称
        name\_list\_1 = response.xpath('//tbody/tr/td\[5\]/nobr/a\[1\]/text()')
        name\_list\_2 \= response\_1.xpath('//tbody/tr/td\[5\]/nobr/a\[1\]/text()')
        # 合并
        name\_list = name\_list\_1 + name\_list\_2
        # 昨日单位净值
        num\_1\_list\_data\_1 = response.xpath('//tbody/tr/td\[6\]/text()')
        num\_1\_list\_data\_2 \= response\_1.xpath('//tr/td\[6\]/span/text()')
        # 合并
        num\_1\_list = num\_1\_list\_data\_1 + num\_1\_list\_data\_2
        # 昨日累计净值
        num\_2\_list\_data\_1 = response.xpath('//tbody/tr/td\[7\]/text()')
        num\_2\_list\_data\_2 \= response\_1.xpath('//tr/td\[7\]/text()')
        # 合并
        num\_2\_list = num\_2\_list\_data\_1 + num\_2\_list\_data\_2
        """调用解析三个列表的方法"""
        self.for\_parse\_three\_list(name\_list, num\_1\_list, num\_2\_list)

    def for\_parse\_three\_list(self, name\_list, num\_1\_list, num\_2\_list):
        """
        解析循环,
        :param name\_list: 股票名称
        :param num\_1\_list: 昨日单位净值
        :param num\_2\_list: 昨日累计净值
        :return:
        """
        # 遍历解析3个列表数据
        for a, b, c in zip(name\_list, num\_1\_list, num\_2\_list):
            # 构造保存的excel字典数据
            dict\_data = {
                # 会根据该字典的key值创建工作簿的sheet名
                '股票数据': \[a, b, c\]
            }
            """调用解析保存excel表格方法"""
            self.parse\_save\_excel(dict\_data)
            print(f'企业:{a}----采集完成!')
        """数据采集完成,调用分析生成图像方法"""
        self.parse\_random\_data(name\_list, num\_1\_list, num\_2\_list)

    def parse\_random\_data(self, name\_list, num\_1\_list, num\_2\_list):
        """
        随机抽取15条数据,进行分析
        :return:
        """
        # 存放随机号码的列表
        index\_list = \[\]
        for i in range(15):
            # 随机抽取15个数据进行分析
            random\_num = random.randint(0, 200)
            # 将随机抽取的号码添加进入准备的列表中
            index\_list.append(random\_num)
        """随机号码生成以后,调用解析生成四张分析图的方法"""
        self.parse\_img\_four\_func(index\_list, name\_list, num\_1\_list, num\_2\_list)

4.数据分析与可视化(例如:数据柱形图、直方图、散点图、盒图、分布图)

def parse\_img\_four\_func(self, index\_list, name\_list, num\_1\_list, num\_2\_list):
        """
        解析生成四张分析图
        :param index\_list: 随机数据的下标
        :param name\_list: 股票名称列表
        :param num\_1\_list: 昨日单位净值列表
        :param num\_2\_list: 昨日累计净值列表
        :return:
        """
        title\_list \= \[\]  # 名称
        qy\_num\_1 = \[\]    # 单位净值
        qy\_num\_2 = \[\]    # 累计净值
        for index\_num in index\_list:
            # 企业名称列表
            title\_list.append(name\_list\[index\_num\])
            # 昨日单位净值列表
            qy\_num\_1.append(num\_1\_list\[index\_num\])
            # 昨日累计净值列表
            qy\_num\_2.append(num\_2\_list\[index\_num\])
        # 第一张图:根据净值生成折线图
        plt.rcParams\['font.sans-serif'\] = \['SimHei'\]
        plt.rcParams\['axes.unicode\_minus'\] = False
        # plot中参数的含义分别是横轴值,纵轴值,线的形状,颜色,透明度,线的宽度和标签
        plt.plot(title\_list, qy\_num\_2, 'ro-', color='#4169E1', alpha=0.8, linewidth=1, label='累计净值')
        plt.plot(title\_list, qy\_num\_1, 'ro-', color='#69e141', alpha=0.8, linewidth=1, label='单位净值')
        # 显示标签,如果不加这句,即使在plot中加了label='一些数字'的参数,最终还是不会显示标签
        plt.legend(loc="upper right")
        plt.xticks(rotation\=270)
        plt.xlabel('地点数量')
        plt.ylabel('工作属性数量')
        plt.savefig('根据净值生成折线图.png')
        plt.show()

        # 第二张图:根据单位净值生成饼图
        addr\_dict\_key = title\_list
        addr\_dict\_value \= qy\_num\_1
        plt.rcParams\['font.sans-serif'\] = \['Microsoft YaHei'\]
        plt.rcParams\['axes.unicode\_minus'\] = False
        plt.pie(addr\_dict\_value, labels\=addr\_dict\_key, autopct='%1.1f%%')
        plt.title(f'单位净值对比')
        plt.savefig(f'单位净值对比-饼图')
        plt.show()

        # 第三张图:根据累计净值生成散点图
        # 这两行代码解决 plt 中文显示的问题
        plt.rcParams\['font.sans-serif'\] = \['SimHei'\]
        plt.rcParams\['axes.unicode\_minus'\] = False
        # 输入岗位地址和岗位属性数据
        production = title\_list
        tem \= qy\_num\_2
        colors \= np.random.rand(len(tem))  # 颜色数组
        plt.scatter(tem, production, s=200, c=colors)  # 画散点图,大小为 200
        plt.xlabel('数量')  # 横坐标轴标题
        plt.xticks(rotation=270)
        plt.ylabel('名称')  # 纵坐标轴标题
        plt.savefig(f'净值散点图.png')
        plt.show()

        # 第四张图:根据净值生成柱状图
        import matplotlib;matplotlib.use('TkAgg')
        plt.rcParams\['font.sans-serif'\] = \['SimHei'\]
        plt.rcParams\['axes.unicode\_minus'\] = False
        zhfont1 \= matplotlib.font\_manager.FontProperties(fname='C:\\Windows\\Fonts\\simsun.ttc')
        name\_list \= title\_list
        num\_list \= \[float(i) for i in qy\_num\_1\]  # 单位净值
        width = 0.5  # 柱子的宽度
        index = np.arange(len(name\_list))
        plt.bar(index, num\_list, width, color\='steelblue', tick\_label=name\_list, label='单位净值')
        plt.bar(index \+ width, qy\_num\_2, width, color='red', hatch='\\\\', label='累计净值')
        plt.legend(\['单位净值', '累计净值'\], prop=zhfont1, labelspacing=1)
        for a, b in zip(index, num\_list):  # 柱子上的数字显示
            plt.text(a, b, '%.2f' % b, ha='center', va='bottom', fontsize=7)
        plt.xticks(rotation\=270)
        plt.title('净值柱状图')
        plt.ylabel('率')
        plt.legend()
        plt.savefig(f'净值-柱状图', bbox\_inches='tight')
        plt.show()



5.将以上各部分的代码汇总,附上完整程序代码

"""ua大列表"""
USER\_AGENT\_LIST \= \[
                  'Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_13\_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3451.0 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:57.0) Gecko/20100101 Firefox/57.0',
                  'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.71 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_12\_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.2999.0 Safari/537.36',
                  'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.70 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.4; en-US; rv:1.9.2.2) Gecko/20100316 Firefox/3.6.2',
                  'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.155 Safari/537.36 OPR/31.0.1889.174',
                  'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.1.4322; MS-RTC LM 8; InfoPath.2; Tablet PC 2.0)',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_12\_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36 OPR/55.0.2994.61',
                  'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.814.0 Safari/535.1',
                  'Mozilla/5.0 (Macintosh; U; PPC Mac OS X; ja-jp) AppleWebKit/418.9.1 (KHTML, like Gecko) Safari/419.3',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_10\_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36',
                  'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0; Touch; MASMJS)',
                  'Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.21 (KHTML, like Gecko) Chrome/19.0.1041.0 Safari/535.21',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
                  'Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_13\_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3451.0 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:57.0) Gecko/20100101 Firefox/57.0',
                  'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.71 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_12\_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.2999.0 Safari/537.36',
                  'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.70 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.4; en-US; rv:1.9.2.2) Gecko/20100316 Firefox/3.6.2',
                  'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.155 Safari/537.36 OPR/31.0.1889.174',
                  'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.1.4322; MS-RTC LM 8; InfoPath.2; Tablet PC 2.0)',

                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_12\_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36 OPR/55.0.2994.61',
                  'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.814.0 Safari/535.1',
                  'Mozilla/5.0 (Macintosh; U; PPC Mac OS X; ja-jp) AppleWebKit/418.9.1 (KHTML, like Gecko) Safari/419.3',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_10\_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36',
                  'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0; Touch; MASMJS)',
                  'Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.21 (KHTML, like Gecko) Chrome/19.0.1041.0 Safari/535.21',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
                  'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4093.3 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_14\_5) AppleWebKit/537.36 (KHTML, like Gecko; compatible; Swurl) Chrome/77.0.3865.120 Safari/537.36',
                  'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_14\_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_14\_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36',
                  'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4086.0 Safari/537.36',
                  'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:75.0) Gecko/20100101 Firefox/75.0',
                  'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) coc\_coc\_browser/91.0.146 Chrome/85.0.4183.146 Safari/537.36',
                  'Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36 VivoBrowser/8.4.72.0 Chrome/62.0.3202.84',
                  'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 Edg/87.0.664.60',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.16; rv:83.0) Gecko/20100101 Firefox/83.0',
                  'Mozilla/5.0 (X11; CrOS x86\_64 13505.63.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:68.0) Gecko/20100101 Firefox/68.0',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',
                  'Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
                  'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36 OPR/72.0.3815.400',
                  'Mozilla/5.0 (X11; Linux x86\_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',
                  \]

from requests\_html import HTMLSession
import os, xlwt, xlrd, random
from xlutils.copy import copy
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.font\_manager import FontProperties  # 字体库
from lxml import etree
session \= HTMLSession()

class DFSpider(object):

    def \_\_init\_\_(self):
        # 起始的请求地址----初始化
        self.start\_url = 'http://fund.eastmoney.com/fund.html'
        # 第二份数据地址
        self.next\_url = 'http://fund.eastmoney.com/HBJJ\_pjsyl.html'

    def parse\_start\_url(self):
        """
        发送请求,获取响应
        :return:
        """
        # 请求头
        headers = {
            # 通过随机模块提供的随机拿取数据方法
            'User-Agent': random.choice(USER\_AGENT\_LIST)
        }
        # 发送请求,获取响应字节数据
        response = session.get(self.start\_url, headers=headers).content
        """序列化对象,将字节内容数据,经过转换,变成可进行xpath操作的对象"""
        response \= etree.HTML(response)
        """调用提取第二份响应数据"""
        self.parse\_next\_url\_response(response)

    def parse\_next\_url\_response(self, response\_1):
        """
        解析第二个数据页地址
        :return:
        """
        # 请求头
        headers = {
            # 通过随机模块提供的随机拿取数据方法
            'User-Agent': random.choice(USER\_AGENT\_LIST)
        }
        # 发送请求,获取响应字节数据
        response = session.get(self.start\_url, headers=headers).content
        """序列化对象,将字节内容数据,经过转换,变成可进行xpath操作的对象"""
        response \= etree.HTML(response)
        """调用解析response响应数据方法"""
        self.parse\_response\_data(response, response\_1)

    def parse\_response\_data(self, response\_1, response):
        """
        解析response响应数据,提取
        :return:
        """
        # 股票名称
        name\_list\_1 = response.xpath('//tbody/tr/td\[5\]/nobr/a\[1\]/text()')
        name\_list\_2 \= response\_1.xpath('//tbody/tr/td\[5\]/nobr/a\[1\]/text()')
        # 合并
        name\_list = name\_list\_1 + name\_list\_2
        # 昨日单位净值
        num\_1\_list\_data\_1 = response.xpath('//tbody/tr/td\[6\]/text()')
        num\_1\_list\_data\_2 \= response\_1.xpath('//tr/td\[6\]/span/text()')
        # 合并
        num\_1\_list = num\_1\_list\_data\_1 + num\_1\_list\_data\_2
        # 昨日累计净值
        num\_2\_list\_data\_1 = response.xpath('//tbody/tr/td\[7\]/text()')
        num\_2\_list\_data\_2 \= response\_1.xpath('//tr/td\[7\]/text()')
        # 合并
        num\_2\_list = num\_2\_list\_data\_1 + num\_2\_list\_data\_2
        """调用解析三个列表的方法"""
        self.for\_parse\_three\_list(name\_list, num\_1\_list, num\_2\_list)

    def for\_parse\_three\_list(self, name\_list, num\_1\_list, num\_2\_list):
        """
        解析循环,
        :param name\_list: 股票名称
        :param num\_1\_list: 昨日单位净值
        :param num\_2\_list: 昨日累计净值
        :return:
        """
        # 遍历解析3个列表数据
        for a, b, c in zip(name\_list, num\_1\_list, num\_2\_list):
            # 构造保存的excel字典数据
            dict\_data = {
                # 会根据该字典的key值创建工作簿的sheet名
                '股票数据': \[a, b, c\]
            }
            """调用解析保存excel表格方法"""
            self.parse\_save\_excel(dict\_data)
            print(f'企业:{a}----采集完成!')
        """数据采集完成,调用分析生成图像方法"""
        self.parse\_random\_data(name\_list, num\_1\_list, num\_2\_list)

    def parse\_random\_data(self, name\_list, num\_1\_list, num\_2\_list):
        """
        随机抽取15条数据,进行分析
        :return:
        """
        # 存放随机号码的列表
        index\_list = \[\]
        for i in range(15):
            # 随机抽取15个数据进行分析
            random\_num = random.randint(0, 200)
            # 将随机抽取的号码添加进入准备的列表中
            index\_list.append(random\_num)
        """随机号码生成以后,调用解析生成四张分析图的方法"""
        self.parse\_img\_four\_func(index\_list, name\_list, num\_1\_list, num\_2\_list)

    def parse\_img\_four\_func(self, index\_list, name\_list, num\_1\_list, num\_2\_list):
        """
        解析生成四张分析图
        :param index\_list: 随机数据的下标
        :param name\_list: 股票名称列表
        :param num\_1\_list: 昨日单位净值列表
        :param num\_2\_list: 昨日累计净值列表
        :return:
        """
        title\_list \= \[\]  # 名称
        qy\_num\_1 = \[\]    # 单位净值
        qy\_num\_2 = \[\]    # 累计净值
        for index\_num in index\_list:
            # 企业名称列表
            title\_list.append(name\_list\[index\_num\])
            # 昨日单位净值列表
            qy\_num\_1.append(num\_1\_list\[index\_num\])
            # 昨日累计净值列表
            qy\_num\_2.append(num\_2\_list\[index\_num\])
        # 第一张图:根据净值生成折线图
        plt.rcParams\['font.sans-serif'\] = \['SimHei'\]
        plt.rcParams\['axes.unicode\_minus'\] = False
        # plot中参数的含义分别是横轴值,纵轴值,线的形状,颜色,透明度,线的宽度和标签
        plt.plot(title\_list, qy\_num\_2, 'ro-', color='#4169E1', alpha=0.8, linewidth=1, label='累计净值')
        plt.plot(title\_list, qy\_num\_1, 'ro-', color='#69e141', alpha=0.8, linewidth=1, label='单位净值')
        # 显示标签,如果不加这句,即使在plot中加了label='一些数字'的参数,最终还是不会显示标签
        plt.legend(loc="upper right")
        plt.xticks(rotation\=270)
        plt.xlabel('地点数量')
        plt.ylabel('工作属性数量')
        plt.savefig('根据净值生成折线图.png')
        plt.show()

        # 第二张图:根据单位净值生成饼图
        addr\_dict\_key = title\_list
        addr\_dict\_value \= qy\_num\_1
        plt.rcParams\['font.sans-serif'\] = \['Microsoft YaHei'\]
        plt.rcParams\['axes.unicode\_minus'\] = False
        plt.pie(addr\_dict\_value, labels\=addr\_dict\_key, autopct='%1.1f%%')
        plt.title(f'单位净值对比')
        plt.savefig(f'单位净值对比-饼图')
        plt.show()

        # 第三张图:根据累计净值生成散点图
        # 这两行代码解决 plt 中文显示的问题
        plt.rcParams\['font.sans-serif'\] = \['SimHei'\]
        plt.rcParams\['axes.unicode\_minus'\] = False
        # 输入岗位地址和岗位属性数据
        production = title\_list
        tem \= qy\_num\_2
        colors \= np.random.rand(len(tem))  # 颜色数组
        plt.scatter(tem, production, s=200, c=colors)  # 画散点图,大小为 200
        plt.xlabel('数量')  # 横坐标轴标题
        plt.xticks(rotation=270)
        plt.ylabel('名称')  # 纵坐标轴标题
        plt.savefig(f'净值散点图.png')
        plt.show()

        # 第四张图:根据净值生成柱状图
        import matplotlib;matplotlib.use('TkAgg')
        plt.rcParams\['font.sans-serif'\] = \['SimHei'\]
        plt.rcParams\['axes.unicode\_minus'\] = False
        zhfont1 \= matplotlib.font\_manager.FontProperties(fname='C:\\Windows\\Fonts\\simsun.ttc')
        name\_list \= title\_list
        num\_list \= \[float(i) for i in qy\_num\_1\]  # 单位净值
        width = 0.5  # 柱子的宽度
        index = np.arange(len(name\_list))
        plt.bar(index, num\_list, width, color\='steelblue', tick\_label=name\_list, label='单位净值')
        plt.bar(index \+ width, qy\_num\_2, width, color='red', hatch='\\\\', label='累计净值')
        plt.legend(\['单位净值', '累计净值'\], prop=zhfont1, labelspacing=1)
        for a, b in zip(index, num\_list):  # 柱子上的数字显示
            plt.text(a, b, '%.2f' % b, ha='center', va='bottom', fontsize=7)
        plt.xticks(rotation\=270)
        plt.title('净值柱状图')
        plt.ylabel('率')
        plt.legend()
        plt.savefig(f'净值-柱状图', bbox\_inches='tight')
        plt.show()

    def parse\_save\_excel(self, data\_dict):
        """
        保存数据
        :return:
        """
        # 判断保存数据的文件夹是否存在,不存在,就创建
        os\_path\_1 = os.getcwd() + '/数据/'
        if not os.path.exists(os\_path\_1):
            os.mkdir(os\_path\_1)
        os\_path \= os\_path\_1 + '股票数据.xls'
        if not os.path.exists(os\_path):
            # 创建新的workbook(其实就是创建新的excel)
            workbook = xlwt.Workbook(encoding='utf-8')
            # 创建新的sheet表
            worksheet1 = workbook.add\_sheet("股票数据", cell\_overwrite\_ok=True)
            excel\_data\_1 \= ('股票名称', '昨日单位净值', '昨日累计净值')
            for i in range(0, len(excel\_data\_1)):
                worksheet1.col(i).width \= 2560 \* 3
                #               行,列,  内容,            样式
                worksheet1.write(0, i, excel\_data\_1\[i\])
            workbook.save(os\_path)
        # 判断工作表是否存在
        if os.path.exists(os\_path):
            # 打开工作薄
            workbook = xlrd.open\_workbook(os\_path)
            # 获取工作薄中所有表的个数
            sheets = workbook.sheet\_names()
            for i in range(len(sheets)):
                for name in data\_dict.keys():
                    worksheet \= workbook.sheet\_by\_name(sheets\[i\])
                    # 获取工作薄中所有表中的表名与数据名对比
                    if worksheet.name == name:
                        # 获取表中已存在的行数
                        rows\_old = worksheet.nrows
                        # 将xlrd对象拷贝转化为xlwt对象
                        new\_workbook = copy(workbook)
                        # 获取转化后的工作薄中的第i张表
                        new\_worksheet = new\_workbook.get\_sheet(i)
                        for num in range(0, len(data\_dict\[name\])):
                            new\_worksheet.write(rows\_old, num, data\_dict\[name\]\[num\])
                        new\_workbook.save(os\_path)

    def run(self):
        """
        启动方法
        :return:
        """
        self.parse\_start\_url()

if \_\_name\_\_ == '\_\_main\_\_':
    d \= DFSpider()
    d.run()

仅用作项目练习,切勿商用

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。


二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,还有环境配置的教程,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频全套

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

今天就分享到这里吧

相关推荐
工业互联网专业9 分钟前
Python毕业设计选题:基于python的酒店推荐系统_django+hadoop
hadoop·python·django·vue·毕业设计·源码·课程设计
任小永的博客15 分钟前
VUE3+django接口自动化部署平台部署说明文档(使用说明,需要私信)
后端·python·django
凡人的AI工具箱17 分钟前
每天40分玩转Django:Django类视图
数据库·人工智能·后端·python·django·sqlite
余生H21 分钟前
前端Python应用指南(三)Django vs Flask:哪种框架适合构建你的下一个Web应用?
前端·python·django
凡人的AI工具箱27 分钟前
每天40分玩转Django:实操图片分享社区
数据库·人工智能·后端·python·django
小军军军军军军31 分钟前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
数据小小爬虫39 分钟前
Python爬虫获取AliExpress商品详情
开发语言·爬虫·python
小爬虫程序猿40 分钟前
利用Python爬虫速卖通按关键字搜索AliExpress商品
开发语言·爬虫·python
一朵好运莲1 小时前
React引入Echart水球图
开发语言·javascript·ecmascript
Eiceblue1 小时前
使用Python获取PDF文本和图片的精确位置
开发语言·python·pdf