深度学习基准模型Transformer

深度学习基准模型Transformer

深度学习基准模型Transformer,最初由Vaswani等人在2017年的论文《Attention is All You Need》中提出,是自然语言处理(NLP)领域的一个里程碑式模型。它在许多序列到序列(seq2seq)任务中,尤其是机器翻译,展现了卓越的性能,并逐渐成为处理序列数据的标准架构之一。以下是Transformer模型的关键特点和组件:

  1. Self-Attention机制:这是Transformer模型的核心创新。与传统的循环神经网络(RNNs)不同,Self-Attention允许模型并行处理序列中的所有位置,通过计算输入序列中所有元素对的相互关系来捕捉依赖关系,极大地提升了模型处理长距离依赖的能力和训练速度。
  2. Positional Encoding:由于Self-Attention机制本身不具备顺序信息,Transformer通过加入位置编码来为输入序列的每个位置附加一个固定的向量,这样模型就能区分不同位置的输入信息,确保模型理解序列中元素的顺序。
  3. Encoder-Decoder架构:Transformer模型通常包含一个编码器(Encoder)和一个解码器(Decoder)。编码器负责将输入序列编码为一个高维向量表示,解码器则利用这些向量信息生成输出序列。解码器中还包含了Masked Self-Attention,以防止未来信息泄露。
  4. 多层堆叠:Transformer的编码器和解码器都由多个相同的层堆叠而成,每层包含多头自注意力(Multi-Head Attention)子层和前馈神经网络(Feed Forward Networks, FFNs)子层,之间通过残差连接和Layer Normalization增强模型的表达能力和稳定性。
  5. 并行化和效率:由于Self-Attention的并行特性,Transformer模型在现代硬件上能非常高效地训练,相较于RNNs,它降低了训练时间并可以处理更大量的数据。
  6. 广泛的应用:Transformer模型的成功不仅限于机器翻译,它还是诸如BERT、GPT系列等许多先进预训练模型的基础。这些模型在语言理解、生成、问答、文本分类等众多NLP任务上刷新了记录,展示了Transformer架构的通用性和强大功能。
整体架构

Encoder与Decoder就是先归纳后推理

子结构
英文输入
中文输入

Transformer模型的出现不仅推动了NLP领域的发展,还影响了计算机视觉、语音识别等其他领域的研究,成为了深度学习领域的一个重要基石。

语音识别等其他领域的研究,成为了深度学习领域的一个重要基石。

了解更多知识请戳下:

@Author:懒羊羊

相关推荐
劲夫学编程43 分钟前
leetcode:杨辉三角
算法·leetcode·职场和发展
毕竟秋山澪1 小时前
孤岛的总面积(Dfs C#
算法·深度优先
深度学习实战训练营1 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20063 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_3 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover3 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川4 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
励志成为嵌入式工程师5 小时前
c语言简单编程练习9
c语言·开发语言·算法·vim
捕鲸叉5 小时前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer5 小时前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法