数据挖掘常见算法(关联)

Apriori算法

Apriori算法基于频繁项集性质的先验知识,使用由下至上逐层搜索的迭代方法,即从频繁1项集开始,采用频繁k项集搜索频繁k+1项集,直到不能找到包含更多项的频繁项集为止。

Apriori算法由以下步骤组成,其中的核心步骤是连接步和剪枝步:

  1. 连接步

  2. 剪枝步

eg1:

eg2:

|-----|-------------|
| TID | ItemSet |
| 1 | 啤酒,尿布,牙膏 |
| 2 | 尿布,牙膏,面包,牛奶 |
| 3 | 啤酒,牙膏,牛奶 |
| 4 | 尿布,牙膏,面包 |
| 5 | 尿布,牙膏,面包,牛奶 |

(1)写出Apriori算法生成频繁项目集的结果(MinSupport=60%)

Apriori算法------不足

①对数据库的扫描次数过多

②Apriori算法会产生大量的中间项集

③采用唯一支持度,没有将各个属性的重要程度的不同都考虑进去

④算法的适应面窄

Apriori算法------改进

①通过减少扫描数据库的次数改进I/O的性能;

②改进产生频繁项集的计算性能;

③寻找有效的并行关联规则算法;

④引入抽样技术改进生成频繁项集的I/O和计算性能;

⑤扩展应用领域。比如展开定量关联规则、泛化关联规则及周期性的关联规则的研究。

FP-Growth算法

频繁模式树增长算法(Frequent Pattern Tree Growth)采用分而治之的基本思想,将数据库中的频繁项集压缩到一棵频繁模式树中,同时保持项集之间的关联关系。然后将这棵压缩后的频繁模式树分成一些条件子树,每个条件子树对应一个频繁项,从而获得频繁项集,最后进行关联规则挖掘。

FpGrowth算法的平均效率远高于Apriori算法,但它并不能保证高效率,它的效率依赖于数据集。Fptree还需要其他的开销,需要存储空间更大,使用FpGrowth算法前,首先需要对数据分析,在决策是否采用FpGrowth算法。

相关推荐
乐迪信息1 小时前
乐迪信息:目标检测算法+AI摄像机:煤矿全场景识别方案
人工智能·物联网·算法·目标检测·目标跟踪·语音识别
学术小白人3 小时前
【EI会议征稿通知】2026年智能感知与自主控制国际学术会议(IPAC 2026)
人工智能·物联网·数据分析·区块链·能源
HyperAI超神经3 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
ASKED_20196 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba6 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学6 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子6 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望6 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端6 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白6 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗